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Abstract

In response to the COVID-19 pandemic, large parts of the economy have been
locked down and, as a result, households’ income risk has risen sharply. At the same
time, policy makers have put forward the largest stimulus package in history. In the
U.S., it amounts to $2 trillion, a quarter of which is earmarked for transfer payments
to households. To the extent that such transfers are conditional on recipients being
unemployed, they mitigate income risk and the adverse impact of the lockdown ex
ante. Unconditional transfers, in contrast, stabilize income ex post. We simulate the
effects of a lockdown in a medium-scale HANK model and quantify the impact of
transfers. For the short run, we find large differences in the transfer multiplier: it is
0.25 for unconditional transfers and 1.5 for conditional transfers. Overall, we find that
the transfers reduce the output loss due to the pandemic by up to 5 percentage points.
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“The reason it doesn’t feel like the Great Depression is emergency relief, which has
compensated many workers for lost wages.” Paul Krugman on Twitter, June 6, 2020

1 Introduction

The economic fallout of the COVID-19 pandemic is unprecedented. As many businesses and
industries have been locked down in an effort to limit infections, unemployment has been
rising sharply. In the ten weeks from mid-March to the end of May 2020, more than 40 million
initial claims to unemployment benefits have been filed in the U.S. The left panel of Figure 1
shows time-series data for the last two decades, illustrating that the recent increase is rather
exceptional. By constraining social interactions and necessitating quarantine measures, the
COVID-19 pandemic has thus increased the income risk for U.S. households considerably—
and much more so than in a usual recession.1 This happened against the backdrop of a
general increase in economic uncertainty. In the right panel of Figure 1, we display the
implied stock returns volatility (VIX): by late March it had reached levels previously seen
only during the financial crisis in 2008.2

The pandemic also triggered an exceptional fiscal response.3 On March 27, President
Trump signed the Coronavirus Aid, Relief, and Economic Security (CARES) Act into law.
As a result, $2 trillion of federal funds were disbursed to households and firms through
various channels. The largest items on the household side include, first, a one-time payment
of $1,200 to any adult in the U.S. population with a gross income of $75,000 or less and,
second, a top up to state unemployment benefits of $600 per week. Conditional on being
unemployed, this top-up payment was a lump sum and running up to the end of July 2020.
Under the CARES Act, $250 billion of federal expenditures were earmarked for each of these
items. To put this into perspective, recall that the American Recovery and Reinvestment Act
(ARRA), legislated in 2009 in response to the financial crisis, mobilized some $800 billion of
additional federal spending in total.

In this paper, we analyze the quantitative impact of the transfer components of the
CARES Act and assess to what extent they limit the economic fallout from the COVID-19

1Initially, some observers suggested that unemployment would reach 30% in the second quarter of 2020;
see, for instance, the remark by the president of the Federal Reserve Bank of St. Louis James Bullard,
reported by Bloomberg on March 22, 2020, or Faria-e-Castro (2020a).

2Economic policy uncertainty, too, reached an all time high (Baker et al., 2020). Dietrich et al. (2020)
document COVID-19-induced uncertainty at the household level on the basis of a real-time survey.

3The Fed, too, took a series of measures in response to the COVID-19 crisis, including cutting its policy
rate to zero. In this paper we focus on the fiscal response to the crisis.
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Figure 1: Unemployment and uncertainty. Notes: Panel A) shows initial claims to unem-
ployment benefits, with observations for the weeks since mid-March 2020 indi-
cated by the transparent red bars. Panel B) shows CBOE Volatility Index: VIX.
Weekly observations: January 2000 to May 2020. Source: FRED Economic Data,
St. Louis Fed.

pandemic. We proceed in two steps. First, we develop the scenario of a lockdown that
captures the essential economic aspect of the COVID-19 crisis. Specifically, we assume that
a sizeable fraction of the labor force is confined to quarantine or, more generally, “locked
out” of work. In addition, a fraction of the aggregate capital stock and the goods of some
sectors also become temporarily unavailable for production and consumption. We refer to
this scenario as the “quarantine shock,” or “Q-shock” for short. We remain agnostic as
to whether the Q-shock is a deliberate government choice or the result of voluntary social
restraint. We assume, in line with actual developments, that it is largely anticipated. As
a result, the shock not only lowers the production potential of the aggregate economy, it
also triggers an unprecedented increase in income risk at the household level, which, in turn,
induces the private sector to increase savings. As a result, expenditures decline and economic
activity collapses—well before the decline of the production potential materializes in full.

Second, given the Q-shock, we investigate how key aspects of the fiscal response to
the crisis play out. Specifically, we focus on the transfer payments to households under
the CARES Act and distinguish between a) unconditional transfers and b) transfers that
are conditional on the recipient being unemployed.4 Unconditional transfers are part of the

4There is also an element of conditionality in the $1,200 payment per person under the CARES Act, but
this concerns only a small fraction of the population. We account for this in our model simulations but refer
to it as an “unconditional transfer” for simplicity.

2



recession-fighting toolkit and have been deployed before. The Economic Stimulus Act passed
in February 2008 under the Bush administration, for instance, was a $100 billion program
under which taxpayers received a $900 payment (Broda and Parker, 2014). The economic
rationale is straightforward: to the extent that households are liquidity or credit constrained,
they will spend the largest part of the transfer, even if taxes may go up at some point in
the future. This, in turn, may undo some of the reduction in private expenditure triggered
by the recession or, more specifically in the present context, by the Q-shock. We also study
how conditional transfers play out. By targeting the unemployed, the amount of funds per
recipient becomes considerably larger for a fiscal package of a given size. More importantly
still, it is a measure that lowers the income risk ex ante and thus the need for precautionary
savings in response to the Q-shock.

We conduct our analysis within a heterogeneous agent New Keynesian (HANK) model,
building on earlier work by Bayer et al. (2020a,b) who estimate versions of this model. It
is uniquely suited for the purpose at hand because it features income risk at the household
level: households face different labor market outcomes and, because financial markets are
incomplete, the resulting income risk is not shared across households. As argued above,
increased household income risk is an essential aspect of the economic fallout of the COVID-
19 pandemic. In addition, the model accounts for all frictions that are necessary for a
full-fledged account of actual business cycle dynamics.

Our main results are based on a specific scenario for the Q-shock: it materializes in
March 2020, but is partly anticipated in February. Its full effect is felt in April when the
unemployment rate peaks at 16%. We find that at this point the economy is already in a
deep recession. Afterwards, the recession intensifies and reaches a trough with an output
loss of almost 20% relative to the pre-shock level. Yet this scenario does not feature any
fiscal transfers. It merely serves as a benchmark to assess their effect. Once we account
for the transfer payments under the CARES Act, we find that the recessionary effect of the
Q-shock is reduced to 15%.

We zoom in on how the transfers alter the impact of the shock and find the distinction
between conditional and unconditional transfers to be crucial. To see this, we compute the
cumulative transfer multiplier. In the short run it is about 0.75 for the overall transfer
component of the CARES Act, but 1.5 for conditional transfers and 0.25 for unconditional
transfers. Hence, conditional transfers are particularly effective in stabilizing the economy.
In general, conditional transfers are more effective because they are targeted to households
with the highest marginal propensity to consume and because they lower income risk ex
ante. In the context of our analysis, we find that the second effect dominates quantitatively
in accounting for the high effectiveness of conditional transfers.
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We also study the distributional consequences, both of the Q-shock and of the transfer
payments under the CARES Act. Focusing on the Gini coefficients of total income, labor
earnings, consumption, and wealth, we find that the Q-shock drives up all four measures
of inequality, at least in the medium run. In the first 3-4 months, consumption and wealth
inequality fall because the wealthiest households are hit by the recession-induced fall in the
price of capital. But once a substantial fraction of households are in quarantine, these two
measures also rise above the pre-crisis level. The transfer package under the CARES Act,
through its progressive nature, is quite successful in containing the increase in inequality.

There are relatively few estimates of the transfer multiplier, at least compared to the gov-
ernment spending multiplier, for which there is an abundance of estimates recently surveyed
by Ramey (2019). One reason is that in standard representative agent models, Ricardian
equivalence holds such that transfers do not impact consumption and output at all. Hence,
in their influential assessment of the ARRA, Cogan et al. (2010) focus on the effect of gov-
ernment purchases rather than transfers. Coenen et al. (2012) compare transfer multipliers
in seven large-scale “two-agent New Keynesian” (TANK) models. They find that transfers
that are targeted to liquidity constrained households are a particularly effective way to boost
output. Instead, we find that transfers conditional on being unemployed are particularly ef-
fective. Taken at face value our results appear thus similar to theirs. And yet, the economic
mechanism at the heart of our analysis is fundamentally different because TANK models do
not capture idiosyncratic income risk.5

There is also work on the transfer multiplier in incomplete markets models of the HANK
type. Oh and Reis (2012) perform a quantitative analysis of the transfers of the ARRA
package in a model with household heterogeneity and sticky information. They find very
small transfer multipliers on output, even though they assume that transfers are targeted to
households with a high marginal propensity to consume.6 Likewise, Hagedorn et al. (2019)
also report moderate values for the transfer multiplier in a comprehensive analysis of fiscal
multipliers in a HANK model. Against this background, the distinct contribution of our
analysis is to show that temporary transfers in deep recessions lower income risk ex ante and
generate sizeable multiplier effects, in line with earlier work on the role of unemployment
benefits as automatic stabilizers (McKay and Reis, 2020; Kekre, 2019).

A quickly growing literature takes up the issues related to the COVID-19 pandemic.
Guerrieri et al. (2020) stress that the economic fallout from the pandemic may affect supply

5Moreover, while Ricardian equivalence fails in TANK models, (targeted) transfer multipliers are still
moderate unless the zero lower bound binds. For analytical results based TANK models see Bilbiie et al.
(2013), Giambattista and Pennings (2017), and Bilbiie (2019). Mehrotra (2018) studies transfer multipliers
in a model with credit frictions.

6McKay and Reis (2016), in turn, report a tax multiplier of 0.27 in a calibrated HANK model.
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as well as demand. They argue that asymmetric lockdowns across sectors can create demand
shortages. We are the first to quantify this channel in a medium-scale DSGE model and find
that the temporary unavailability of some goods explains three-quarters of the peak output
loss. However, demand shortages does not affect the size of the transfer multiplier.

Eichenbaum et al. (2020), in turn, model the interaction between economic decisions and
epidemic dynamics and study the optimal government policy in the presence of an infection
externality. Kaplan et al. (2020) add household heterogeneity to this type of analysis and fo-
cus on the distributional consequences of the pandemic and the policy response. Glover et al.
(2020) stress the importance of household heterogeneity but their focus is on age rather than
income because age matters for infection risk. Most closely related to our paper is the work
on the effect of the fiscal stimulus in the context of a pandemic-induced downturn. Faria-e-
Castro (2020b) analyzes fiscal policy options in a calibrated TANK model. Auerbach et al.
(2020), instead, put forward a stylized model with COVID-19-related restrictions and eco-
nomic slack. They show analytically that transfers to low-income households can increase
spending on unrestricted items and that targeted transfers to firms are particularly effective
in stimulating the economy. Cox et al. (2020) document on the basis of household-level bank
data that, after an initial drop, spending has rebounded most rapidly for low-income house-
holds since mid-April 2020. At the same time their liquid assets have increased considerably.
According to the authors this suggests—in line with our model-based analysis—that the
CARES stimulus program played an important role in limiting the effects of labor market
disruptions on spending.

The remainder of this paper is organized as follows. Section 2 outlines the model struc-
ture. Section 3 explains in detail our parameter choice. We present the results of our model
simulations in Section 4. Here we also zoom in on the transmission mechanism, of both the
Q-shock and the alternative transfer instruments, and analyze their distributional effects. A
final section offers some conclusions.

2 Model

The model and our exposition here closely follow Bayer et al. (2020b), extended to capture
the economic fallout from the global COVID-19 pandemic. We model an economy composed
of a firm sector, a household sector, and a government sector. In the firm sector, we define
several layers in order to maintain tractability. There is a continuum of isomorphic final-good
sectors, each characterized by monopolistic competition. Sectors differ in that some are put
under quarantine in response to the Q-shock, while others are not. In this case, as explained
in detail by Guerrieri et al. (2020), demand spillovers across sectors depend crucially on the
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elasticity of substitution across the goods produced in different sectors. Hence, we allow it
to differ from the elasticity of substitution within sectors.

Final good producers rely on homogeneous intermediate inputs provided by perfectly
competitive intermediate goods producers. Capital goods, in turn, are produced on the
basis of final goods, subject to adjustment costs. Labor services are assembled on the basis
of differentiated labor types provided by unions that, in turn, differentiate the raw labor
input of households. Price setting for the final goods as well as wage setting by unions
is subject to nominal rigidities. Households earn income from supplying (raw) labor and
capital and from owning the firm sector, absorbing all of its rents that stem from the market
power of unions and final goods producers, and decreasing returns to scale in capital goods
production. The government sector runs both a fiscal authority and a monetary authority.
The fiscal authority levies taxes on labor income and distributed pure profits (monopoly
rents), issues government bonds, and adjusts expenditures and tax rates to stabilize debt in
the long run. The monetary authority sets the nominal interest rate on government bonds
according to a Taylor rule targeting inflation.

2.1 Households

The household sector is subdivided into two types of agents: workers and entrepreneurs.
The transition between both types is stochastic. Both rent out physical capital, but only
workers supply labor. The efficiency of a worker’s labor evolves randomly, exposing worker-
households to labor-income risk. Entrepreneurs do not work, but earn all pure rents in
our economy except for the rents of unions, which are equally distributed across workers.
All households self-insure against the income risks they face by saving in a liquid nominal
asset (bonds) and a less liquid asset (capital). Trading illiquid assets is subject to random
participation in the capital market.

To be specific, there is a continuum of ex-ante identical households of measure one,
indexed by i. Households are infinitely lived, have time-separable preferences with time-
discount factor β, and derive felicity from consumption cit and leisure. They obtain income
from supplying labor, nit, from renting out capital, kit, and from earning interest on bonds,
bit, and potentially from profits or union transfers. Households pay taxes on labor and profit
income.

A key economic aspect of the pandemic is that a substantial fraction of workers is locked
out of work. We capture this in our model by assigning zero labor market productivity
to a random fraction of households—a quarantine state—from which they typically recover
quickly. To model the aggregate shock to the economy, we let the probability of entering the
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quarantine state vary over time and calibrate it to be a very rare state in the steady state.
As workers move into quarantine, we assume that a corresponding share of the aggregate
capital stock is mothballed and not utilized in production until the quarantine ends.

2.1.1 Productivity, Labor Supply and Labor Income

A household’s gross labor income wtnithit when not quarantined is composed of the aggregate
wage rate on raw labor, wt, the household’s hours worked, nit, and its idiosyncratic labor
productivity, hit. We assume that productivity evolves according to a log-AR(1) process and
a fixed probability of transition between the worker and the entrepreneur state:

h̃it =


exp

(
ρh log h̃it−1 + ϵhit

)
with probability 1− ζ if hit−1 ̸= 0,

1 with probability ι if hit−1 = 0,

0 else,

(1)

with individual productivity hit = h̃it∫
h̃itdi

such that average productivity is normalized to one.
The shocks ϵhit to productivity are normally distributed with constant variance. A variable
Qit indicates that the household is quarantined, i.e., if Qit = 1 the household is not able
to work. Moving into and out of the quarantine states evolves according to a first-order
Markov process with time-varying entry probabilities and time-fixed exit probabilities pint (h)

and pout, respectively. Note, that the entry probability depends on the human capital of the
household to capture the heterogeneous incidence of job losses across the income distribution
(Mongey et al., 2020). While in quarantine, human capital evolves as if workers were still
employed, such that quarantine is effectively a layoff on recall. We denote by 1 − Ht the
fraction of worker households in quarantine and assume that the same fraction (1 −Ht) of
final-good sectors and capital is quarantined, too.

With probability ζ households become entrepreneurs (h = 0). With probability ι an
entrepreneur returns to the labor force with median productivity. An entrepreneur obtains a
fixed share of the pure rents (aside from union rents), ΠF

t , in the economy (from monopolistic
competition in the goods sector and the creation of capital). We assume that the claim to
the pure rent cannot be traded as an asset. Union rents, ΠU

t , are distributed lump-sum
across workers, leading to labor-income compression.

With respect to leisure and consumption, households have GHH preferences (Greenwood
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et al., 1988) and maximize the discounted sum of felicity:7

E0 max
{cit,nit}

∞∑
t=0

βtu [cit −G(hit, nit)] . (2)

The maximization is subject to the budget constraints described further below. The felic-
ity function u exhibits a constant relative risk aversion (CRRA) with risk aversion parameter
ξ > 0,

u(xit) =
1

1− ξ
x1−ξ
it , (3)

where xit = cit − G(hit, nit) is household i’s composite demand for goods consumption cit

and leisure and G measures the disutility from work. The consumption good is a bundle of
varieties j of differentiated goods from a continuum of final-good sectors k of measure one.
Formally, we rely on a nested Dixit-Stiglitz aggregator:

cit =

∫ ψkt

(∫
j∈S(k)

c
ηF−1

ηF
ijkt dj

) ηF
ηF−1

ηS−1

ηS

dk


ηS

ηS−1

, (4)

where j ∈ S(k) indicates that differentiated good j belongs to sector k. The elasticity of
substitution within a final-good sector, ηF , is assumed to be larger than the substitutability
across sectors, ηS. Each of the differentiated goods, j, is offered at price pjt. Not all sectors
are equally affected by the pandemic. We model this by the indicator ψ which determines
whether sector-k goods can actually be bought (ψkt = 1) or become unavailable due to the
pandemic (ψkt = 0). This means that the demand for each of the varieties is given by

cijkt = ψkt

(
pjt
Pkt

)−ηF

cikt . (5)

Here Pkt is the (ideal) price index of all varieties in sector k and using these prices, we obtain
the aggregate price level Pt =

(∫
ψktP

1−ηS
kt dk

) 1
1−ηS .

The disutility of work, G(hit, nit), determines a household’s labor supply that is not
under quarantine given the aggregate wage rate, wt, and a labor income tax, τt, through the
first-order condition:

∂G(hit, nit)

∂nit

= (1− τt)wthit. (6)

7The assumption of GHH preferences is motivated by the fact that many estimated DSGE models of
business cycles find small aggregate wealth effects in the labor supply; see, e.g., Born and Pfeifer (2014). We
find the same for our HANK model when comparing the marginal likelihood of the model with GHH and
KPR preferences.
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Assuming that G has a constant elasticity w.r.t. n, ∂G(hit,nit)
∂nit

= (1 + γ)G(hit,nit)
nit

with γ > 0,
we can simplify the expression for the composite consumption good xit making use of the
first-order condition (6):

xit = cit −G(hit, nit) = cit −
(1− τt)wthitnit

1 + γ
. (7)

When the Frisch elasticity of labor supply is constant, the disutility of labor is always a
constant fraction of labor income. Therefore, in both the household’s budget constraint and
felicity function, only after-tax income enters and neither hours worked nor productivity
appears separately.

Without further loss of generality, we can therefore normalize the disutility of labor:
G(hit, nit) = hit

n1+γ
it

1+γ
. This simplifies the household problem as hit drops out from the first-

order condition. All not-quarantined households supply the same number of hours nit =

N(wt), and income and productivity risk are the same. Total effective labor input,
∫
(1 −

Qit)nithitdi, is hence equal to N(wt)Ht because Ht :=
∫
(1−Qit)hitdi.

2.1.2 Consumption, Savings, and Portfolio Choice

Given this labor income, households optimize intertemporally subject to their budget con-
straint:

cit + bit+1 + qtkit+1 = bit
R(bit,R

b
t)

πt
+ (qt + rt)kit + Tt(h)

+ (1− τt)[(1−Qit)hitwtNt +R(h)QithitwtNt + Ihit ̸=0Π
U
t + Ihit=0Π

F
t ],

kit+1 ≥ 0, bit+1 ≥ B ,

(8)

where ΠU
t is union profits, ΠF

t is firm profits, bit is real bond holdings, kit is the amount
of illiquid assets, qt is the price of these assets, rt is their dividend, πt = Pt−Pt−1

Pt−1
is realized

inflation, and R is the nominal interest rate on bonds, which depends on the portfolio position
of the household and the central bank’s interest rate Rb

t , which is set one period before. All
households that do not participate in the capital market (kit+1 = kit) still obtain dividends
and can adjust their bond holdings. Depreciated capital has to be replaced for maintenance,
such that the dividend, rt, is the net return on capital. Holdings of bonds have to be above
an exogenous debt limit B, and holdings of capital have to be non-negative. Households that
are quarantined receive a payment replacing a fraction R(h) of their forgone labor income.
In line with the U.S. unemployment insurance scheme, the replacement rate depends on the
level of forgone income. Depending on their income level, households potentially receive a
lump-sum transfer Tt(h).
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Households make their savings choices and their portfolio choice between liquid bonds
and illiquid capital in light of a capital market friction that renders capital illiquid because
participation in the capital market is random and i.i.d. in the sense that only a fraction, λ,
of households is selected to be able to adjust their capital holdings in a given period.

What is more, we assume that there is a wasted intermediation cost given by a constant,
R, when households resort to unsecured borrowing. This means, we specify:

R(bit, R
b
t) =

Rb
t if bit ≥ 0

Rb
t +R if bit < 0.

(9)

The extra wedge for unsecured borrowing creates a mass of households with zero unsecured
credit but with the possibility to borrow, though at a penalty rate.

Since a household’s saving decision will be some non-linear function of that household’s
wealth and productivity, inflation and all other prices will be functions of the joint distri-
bution, Θt, of (b, k, h,Q) in t. This makes Θ a state variable of the household’s planning
problem and this distribution evolves as a result of the economy’s reaction to aggregate
shocks. For simplicity, we summarize all effects of aggregate state variables, including the
distribution of wealth and income, by writing the dynamic planning problem with time-
dependent continuation values.

This leaves us with three functions that characterize the household’s problem: value
function V a for the case where the household adjusts its capital holdings, the function V n

for the case in which it does not adjust, and the expected envelope value, EV , over both:

V a
t (b, k, h,Q) =max

k′,b′a
u[x(b, b′a, k, k

′, h,Q)] + βEtVt+1(b
′
a, k

′, h′, Q′)

V n
t (b, k, h,Q) =max

b′n
u[x(b, b′n, k, k, h,Q)] + βEtVt+1(b

′
n, k, h

′, Q′) (10)

EtVt+1(b
′, k′, h′, Q′) =Et

[
λV a

t+1(b
′, k′, h′, Q′)

]
+ Et

[
(1− λ)V n

t+1(b
′, k, h′, Q′)

]
Expectations about the continuation value are taken with respect to all stochastic processes
conditional on the current states, including time-varying income risk. Maximization is sub-
ject to the corresponding budget constraint.

2.2 Firm Sector

The firm sector consists of four sub-sectors: (a) a labor sector composed of “unions” that
differentiate raw labor and labor packers who buy differentiated labor and then sell labor
services to intermediate goods producers, (b) intermediate goods producers who hire labor
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services and rent out capital to produce goods, (c) final goods producers who differentiate
intermediate goods and then sell them to goods bundlers, who finally sell them as consump-
tion goods to households, and to (d) capital goods producers, who turn bundled final goods
into capital goods.

When profit maximization decisions in the firm sector require intertemporal decisions
(i.e. in price and wage setting and in producing capital goods), we assume for tractability
that they are delegated to a mass-zero group of households (managers) that are risk neutral
and compensated by a share in profits.8 They do not participate in any asset market and
have the same discount factor as all other households. Since managers are a mass-zero group
in the economy, their consumption does not show up in any resource constraint and all but
the unions’ profits go to the entrepreneur households (whose h = 0). Union profits go lump
sum to worker households.

2.2.1 Labor Packers and Unions

Worker households sell their labor services to a mass-one continuum of unions indexed by j,
each of which offers a different variety of labor to labor packers who then provide labor ser-
vices to intermediate goods producers. Labor packers produce final labor services according
to the production function

Nt =

(∫
n̂

ζ−1
ζ

jt dj

) ζ
ζ−1

, (11)

out of labor varieties n̂jt. Only a fraction Ht of these workers finds themselves able to work,
because (1−Ht) is quarantined. Cost minimization by labor packers implies that each variety
of labor, each union j, faces a downward-sloping demand curve

n̂jt =

(
Wjt

W F
t

)−ζ

Nt , (12)

where Wjt is the nominal wage set by union j and W F
t is the nominal wage at which labor

packers sell labor services to final goods producers.
Since unions have market power, they pay the households a wage lower than the price

at which they sell labor to labor packers. Given the nominal wage Wt at which they buy
labor from households and given the nominal wage index W F

t , unions seek to maximize their
discounted stream of profits. However, they face a Calvo-type (1983) of adjustment friction

8Since we solve the model by a first-order perturbation in aggregate shocks, the assumption of risk-
neutrality only serves as a simplification in terms of writing down the model. With a first-order perturbation
we have certainty equivalence and fluctuations in stochastic discount factors become irrelevant.
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with indexation with the probability λw to keep wages constant. They therefore maximize

E0

∞∑
t=0

βtλtw
W F

t

Pt

NtHt

{(
Wjtπ̄

t
W

W F
t

− Wt

W F
t

)(
Wjtπ̄

t
W

W F
t

)−ζ
}
, (13)

by setting Wjt in period t and keeping it constant except for indexation to π̄W , the steady-
state wage inflation rate.

Since all unions are symmetric, we focus on a symmetric equilibrium and obtain the
linearized wage Phillips curve from the corresponding first-order condition as follows, leaving
out all terms irrelevant at a first-order approximation around the stationary equilibrium:

log
(

πW
t

π̄W

)
= βEt log

(
πW
t+1

π̄W

)
+ κw

(
wt

wF
t
− 1

µW

)
, (14)

with πW
t :=

WF
t

WF
t−1

=
wF

t

wF
t−1
πY
t being wage inflation, wt and wF

t being the respective real
wages for households and firms, and 1

µW = ζ−1
ζ

being the target mark-down of wages
the unions pay to households, Wt, relative to the wages charged to firms, W F

t and κw =
(1−λw)(1−λwβ)

λw
.9

2.2.2 Final Goods Producers

Similar to unions, final goods producers differentiate a homogeneous intermediate good and
set prices. Each reseller j in sector k faces a downward-sloping demand curve

yjt = ψkt (pjt/Pkt)
−ηF Ykt (16)

and buys the intermediate good at the nominal price MCt. As we do for unions, we assume
price adjustment frictions à la Calvo (1983) with indexation. We assume for simplicity that
it is i.i.d. whether a sector is active or not and that this shock realizes after price setting.

Under this assumption, the firms’ managers maximize the present value of real profits
given this price adjustment friction, i.e., they maximize:

E0

∞∑
t=0

βtλtY (1− τt)Yktψjt

{(
pjtπ̄

t

Pt

− MCt

Pt

)(
pjtπ̄

t

Pt

)−ηF
}
, (17)

9Including the first-order irrelevant terms, the Phillips curve reads

log
(

πW
t

π̄W

)
= βEt

[
log

(
πW
t+1

π̄W

)
1−τt+1

1−τt

WF
t+1Pt

WF
t Pt+1

Nt+1Ht+1

NtHt

]
+ κw

(
wt

wF
t
− 1

µW

)
(15)

where τt is the average income tax.
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with a time constant discount factor, where 1 − λY is the probability of price adjustment
and π̄ is the steady-state inflation rate.

Since all sectors are symmetric and the fact that a sector is shut down or open is only
realized after price setting lets all firms that can reset their price choose the same price.

Therefore, all sectoral price levels Pkt =
(∫

j∈S(k) p
1−ηF
jt dj

) 1
1−ηF are the same and we denote

this price level by Pkt = P F
t . Yet, the fact that only a fraction Ψt = Eψkt of sectors do

actually offer their varieties implies a loss in final consumption to the households. They lose
out on varieties and this introduces a wedge Ψ

1
1−ηS
t between the average price set by all firms,

P F
t , and the effective Pt of the consumption aggregate (ideal price index): Pt = P F

t Ψ
1

1−ηS
t .

Vice versa, it implies that the real value of total output Yt is by factor Ψ
1

ηS−1

t smaller than
the simple quantity of intermediate goods produced.

We use this expression for the relationship between the average price of goods and the
effective price level to rewrite the maximization problem of price setters as:

E0

∞∑
t=0

βtλtY (1− τt)YtψjtΨ
1

ηS−1

t


pjtπ̄

t

P F
t

− MCt

Pt

1

Ψ
1

ηS−1

t

(
pjtπ̄

t

P F
t

)−ηF

 , (18)

which, through its corresponding first-order condition for price setting, implies a Phillips
curve for average price

log

(
πF
t

π̄

)
= βEt log

(
πF
t+1

π̄

)
+ κY

(
mct/Ψ

1
ηS−1

t − 1
µY

)
, (19)

where we again dropped all terms irrelevant for a first-order approximation and have κY =
(1−λY )(1−λY β)

λY
. Here, πF

t is the gross inflation rate of the average price of final goods, πF
t :=

PF
t

PF
t−1

, which, different from πt, does not take into account whether a sector is locked down
or not. mct :=

MCt

Pt
is the real marginal costs and µY = ηF

ηF−1
is the target markup. The

effective price Pt, the ideal price index, then exhibits an inflation rate πt = πF
t

(
Ψt−1

Ψt

) 1
ηS−1 .

Importantly, the love-of-variety term Ψ
1

ηS−1

t adds an element of as-if-perfectly-flexible
prices to the model. In the first period in which the quarantine shock hits, some varieties are
lost and Ψt falls. As a consequence, the effective price level jumps up even if all individual
prices remain constant because households cannot perfectly substitute the lost varieties.
As households expect the quarantine to be reduced in the future, they expect varieties to
return and hence a falling effective price level from the love-of-variety component. This
deflationary effect of the return of varieties to the consumption basket increases the real
interest rate that households face and leads them to save more. This is the key mechanism
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behind the “Keynesian supply shocks” in Guerrieri et al. (2020) as they explain in Section
3.1 of their paper.

2.2.3 Intermediate Goods Producers

Intermediate goods are produced with a constant returns to scale production function, taking
into account that a fraction Ht of labor and capital is quarantined:

Y F
t = (HtNt)

α(HtutKt)
(1−α) . (20)

Here, utKt is the effective capital stock taking into account utilization ut, i.e., the intensity
with which the existing capital stock is used. Using capital with an intensity higher than
normal results in increased depreciation of capital according to δ (ut) = δ0 + δ1 (ut − 1) +

δ2/2 (ut − 1)2, which, assuming δ1, δ2 > 0, is an increasing and convex function of utilization.
Without loss of generality, capital utilization in the steady state is normalized to 1, so that
δ0 denotes the steady-state depreciation rate of capital goods.

Let mct be the relative price at which the intermediate good is sold to final goods pro-
ducers. The intermediate goods producer maximizes profits,

mctY
F
t −Htw

F
t Nt −Ht [rt + qtδ(ut)]Kt, (21)

where rFt and qt are the rental rate of firms and the (producer) price of capital goods,
respectively. Only non-quarantined factors receive payments.10 The intermediate goods
producer operates in perfectly competitive markets, such that the real wage and the user
costs of capital are given by the marginal products of labor and effective capital:

wF
t = αmct

(
utKt

Nt

)1−α

, (22)

rFt + qtδ(ut) = ut(1− α)mct

(
Nt

utKt

)α

. (23)

We assume that utilization is decided by the owners of the capital goods, taking the
aggregate supply of capital services as given. The optimality condition for utilization is

10None of the quarantine terms show up in any first-order conditions of active production units – the easiest
way to think about this is that production units make their factor demand decisions and only afterwards find
out whether they can produce. If the production unit is quarantined, quarantined capital is still depreciated
at rate δ0 − δ1 + δ2/2. This means capital owners receive an average dividend payment on their capital
rt = rFt Ht − (1−Ht)δ(0).
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given by

qt [δ1 + δ2(ut − 1)] = (1− α)mct

(
Nt

utKt

)α

, (24)

i.e., capital owners increase utilization until the marginal maintenance costs equal the marginal
product of capital services.

Total production Yt = Ψ
1

ηS−1

t Y F
t is scaled by an additional term Ψ

1
ηS−1

t , which reflects the
fact that the loss in varieties through the quarantine decreases the effective productivity of
the economy even further.

2.2.4 Capital Goods Producers

Capital goods producers take the relative price of capital goods, qt, as given in deciding
about their output, i.e., they maximize

E0

∞∑
t=0

βtIt

{
qt

[
1− ϕ

2

(
log

It
It−1

)2
]
− 1

}
. (25)

Optimality of the capital goods production requires (again dropping all terms irrelevant
up to first order)

qt

[
1− ϕ log

It
It−1

]
= 1− βEt

[
qt+1ϕ log

(
It+1

It

)]
, (26)

and each capital goods producer will adjust its production until (26) is fulfilled.
Since all capital goods producers are symmetric, we obtain as the law of motion for

aggregate capital

Kt − (1− δ(ut))Kt−1 =

[
1− ϕ

2

(
log

It
It−1

)2
]
It . (27)

The functional form assumption implies that investment adjustment costs are minimized
and equal to 0 in the steady state.

2.3 Government

The government operates a monetary and a fiscal authority. The monetary authority controls
the nominal interest rate on liquid assets, while the fiscal authority issues government bonds
to finance deficits, chooses the average tax rate in the economy, and adjusts expenditures to
stabilize debt in the long run.
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We assume that monetary policy sets the nominal interest rate following a Taylor-type
(1993) rule with interest rate smoothing:

Rb
t+1

R̄b
=

(
Rb

t

R̄b

)ρR (
πF
t

π̄

)(1−ρR)θπ

. (28)

The coefficient R̄b ≥ 0 determines the nominal interest rate in the steady state. The coeffi-
cient θπ ≥ 0 governs the extent to which the central bank attempts to stabilize inflation. We
assume that the central bank reacts to average, i.e., measured, not effective price inflation
that depends on unobserved substitution elasticities for quarantined products and services.
The parameter ρR ≥ 0 captures interest rate smoothing. We leave out any reaction of the
central bank to the output gap, because it is unclear whether the efficient output that the
central bank should target is the one taking the quarantine measures into account or the
original capacity.

The fiscal branch of the government follows two simple rules for spending and taxes that
react only to the deviation of government debt from its long-run target in order to avoid
fiscal dominance:

Gt

Ḡ
=

(
Gt

Ḡ

)ρG
(
Bt

B̄

)(1−ρG)γG
B

, (29)

τt
τ̄

=
(τt
τ̄

)ρτ
(
Bt

B̄

)(1−ρτ )γτ
B

. (30)

The coefficients γGB and γτB determine the speed at which government debt is returned to its
target level.

Total taxes Tt are then Tt = τt
(
wtHtNt +ΠU

t +ΠF
t

)
and the government budget con-

straint determines government debt residually:

Bt+1 = Rb
t/πtBt +Gt − Tt +

∫
T (hi)di+ wtNt(1−Ht)

∫
R(hi)hidi. (31)

2.4 Goods, Bonds, Capital, and Labor Market Clearing

The labor market clears at the competitive wage given in (22). The bond market clears
whenever the following equation holds:

Bt+1 = Bd(Rb
t , p

in
t , rt, qt,Π

F
t ,Π

U
t , wt, πt, τt,Θt,EtVt+1) := Et

[
λb∗a,t + (1− λ)b∗n,t

]
, (32)
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where b∗a,t, b∗n,t are functions of the states (b, k, h,Q), and depend on how households value
asset holdings in the future, Vt+1(b, k, h,Q), and the current set of prices (and tax rates)
(Rb

t , p
in
t , rt, qt,Π

F
t ,Π

U
t , wt, πt, τt). Future prices do not show up because we can express the

value functions such that they summarize all relevant information on the expected future
price paths. Expectations in the right-hand-side expression are taken w.r.t. the distribution
Θt(b, k, h,Q). Equilibrium requires the total net amount of bonds the household sector
demands, Bd, to equal the supply of government bonds. In gross terms there are more liquid
assets in circulation as some households borrow up to B.

Last, the market for capital has to clear:

Kt+1 = Kd(Rb
t , p

in
t , rt, qt,Π

F
t ,Π

U
t , wt, πt, τt,Θt,EtVt+1) := Et[λkt

∗ + (1− λ)k] , (33)

where the first equation stems from competition in the production of capital goods, and the
second equation defines the aggregate supply of funds from households – both those that
trade capital, λk∗t , and those that do not, (1 − λ)k. Again k∗t is a function of the current
prices and continuation values. The goods market then clears due to Walras’ law, whenever
labor, bonds, and capital markets clear.

2.5 Equilibrium

A sequential equilibrium with recursive planning in our model is a sequence of policy functions
{x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t }, a sequence of value functions {V a

t , V
n
t }, a sequence of prices {wt, w

F
t ,

ΠF
t ,Π

U
t , qt, rt, R

b
t , πt, π

W
t , τt}, a sequence of stochastic states pint and quarantine shocks ϵpt ,

aggregate capital and labor supplies {Kt, Nt}, distributions Θt over individual asset holdings
and productivity, and expectations Γ for the distribution of future prices, such that

1. Given the functional EtVt+1 for the continuation value and period-t prices, policy
functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } solve the households’ planning problem, and given the
policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } and prices, the value functions {V a

t , V
n
t } are a

solution to the Bellman equation (10).

2. Distributions of wealth and income evolve according to households’ policy functions.

3. The labor, the final goods, the bond, the capital, and the intermediate goods markets
clear in every period, interest rates on bonds are set according to the central bank’s
Taylor rule, fiscal policies are set according to the fiscal rules, and stochastic processes
evolve according to their law of motion.

4. Expectations are model consistent.
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Table 1: External/calibrated parameters (monthly frequency)

Parameter Value Description Target

Households
β 0.99 Discount factor see Table 2
ξ 4.00 Relative risk aversion Kaplan et al. (2018)
γ 2.00 Inverse of Frisch elasticity Chetty et al. (2011)
λ 5.50% Portfolio adj. prob. see Table 2
ρh 0.99 Persistence labor income Storesletten et al. (2004)
σh 0.07 STD labor income Storesletten et al. (2004)
ζ 0.02% Trans. prob. from W. to E. see Table 2
ι 2.40% Trans. prob. from E. to W. Guvenen et al. (2014)
pinss 0.02% Trans. prob. into Q see text
pout 50.00% Trans. prob. out of Q see text
R̄ 0.95% Borrowing penalty see Table 2
Firms
α 0.68 Share of labor 62% labor income
δ0 7.5%/12 Depreciation rate Standard value
ηF 11.00 Elasticity of substitution within sectors Price markup 10%
ηS 3.00 Elasticity of substitution between sectors see text
ζ 11.00 Elasticity of substitution Wage markup 10%
Government
τ̄L 0.2 Tax rate level G/Y = 15%
R̄b 1.00 Nominal rate see text
π̄ 1.00 Inflation see text

3 Parameterization

We solve the model by perturbation methods (Bayer and Luetticke, 2020) and parameterize
the model at monthly frequency in the following way. First, we calibrate or fix all param-
eters that determine the steady state of the model. Second, we specify the values of those
parameters that govern the dynamics of the model in line with the estimates of Bayer et al.
(2020b). They estimate a closely related variant of our model using Bayesian full-information
methods.

Table 1 summarizes a first set of parameter values. On the household side, we set the
relative risk aversion to 4, which is common in the incomplete markets literature; see Kaplan
and Violante (2014). We set the Frisch elasticity to 0.5; see Chetty et al. (2011). We
take estimates for idiosyncratic income risk (after tax and transfers) from Storesletten et al.
(2004), ρh = 0.993 and σ̄h = 0.069. Guvenen et al. (2014) provide the probability that a
household will fall out of the top 1% of the income distribution in a given year, which we
take as the transition probability from entrepreneur to worker, ι = 0.024.
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Table 2: Calibrated parameters

Targets Model Data Source Parameter

Mean illiquid assets (K/Y) 2.85 2.86 NIPA Discount factor
Mean liquidity (B/Y) 0.55 0.56 FRED Port. adj. probability
Top10 wealth share 0.67 0.67 WID Fraction of entrepreneurs
Fraction borrowers 0.14 0.16 SCF Borrowing penalty

Table 2 summarizes the calibration of the remaining household parameters. We match
4 targets: 1) average illiquid assets (K/Y=2.86 annual), 2) average liquidity (B/Y=0.56
annual), 3) the fraction of borrowers, 16%, and 4) the average top 10% share of wealth,
which is 67%. This yields a discount factor of 0.993, a portfolio adjustment probability of
5.5%, borrowing penalty of 0.949% monthly (given a borrowing limit of two times average
income), and a transition probability from worker to entrepreneur of 0.02%.11

We model the Q-state as a rare disaster state with almost zero mass in the steady state
(pinss = 0.02%). In that state, households receive government transfers that replace 40% of
their after-tax labor income capped at 50% of median income. This mimics the generosity of
the U.S. unemployment insurance before the CARES Act. The exit probability from the Q-
state is 50% per month (pout = 0.5), so that the expected lockdown duration is two months,
in line with recent developments. In our experiments in the next section, we will increase
pint , the probability of entering Q. We allow the probability of entering the Q-state to depend
on income. In particular, we match the incidence of job losses across the income distribution
during March/April 2020 as documented in Mongey et al. (2020). Specifically, they find that
below median income workers are three times more likely to become unemployed (see their
Figure 5B).12

For the firm side, we set the labor share in production, α, to 68% to match a labor income
share of 62%, which corresponds to the average BLS labor share measure over 1954-2015. The
depreciation rate is 0.717% per month. An elasticity of substitution between differentiated
goods within a sector of 11 yields a markup of 10%. The elasticity of substitution between
labor varieties is also set to 11, yielding a wage markup of 10%. Both are standard values in
the literature. We set the elasticity of substitution across sectors to 3, somewhat below the
intertemporal elasticity of substitution. This ensures that the Q-shock shares the features

11Detailed data sources can be found in Appendix A.
12We fit a logistic function and target the Q-incidence of the 25pct to the 75pct of the income distribution

to be 3.

19



Table 3: Aggregate frictions and policy rules (monthly frequency)

Real frictions Nominal frictions
δs 1.483 ϕ 0.698 κ 0.009 κw 0.011

Government spending Taxes
ρG 0.965 γGB -0.100 ρτ 0.965 γτB -0.400

Monetary policy
ρR 0.965 θπ 1.500

Notes: Parameter values for real and nominal frictions and the Taylor rule (except θy, see
text) based on the estimated HANK model in Bayer et al. (2020b). Tax and government
spending rules parameterized to ensure debt sustainability.

of a “Keynesian supply shock” (Guerrieri et al., 2020), in addition to raising the income risk
of households.

The government taxes labor and profit income. The level of taxes in the steady state,
τL, is set to clear the government budget constraint that corresponds to a government share
of G/Y = 15%. We set steady-state inflation to zero as we have assumed indexation to the
steady-state inflation rate in the Phillips curves. We set the steady-state net interest rate to
0.0%, in order to capture the average federal funds rate in real terms minus output growth
over 1954-2018.

The Taylor rule coefficients on inflation, 1.5 and interest rate inertia, 0.965 at a monthly
level, are in line with the literature. The Taylor rule coefficient on output needs some
discussion, as it is not clear in the current situation whether the Fed’s output target Y ∗

takes the lockdown into account. Given that the Fed has some room for policy discretion
in this, we avoid taking a stand and set the coefficient to zero. The fiscal rules that govern
spending and taxes are parameterized to ensure that public debt is slowly brought back to
the steady state after a debt build-up.

The parameters that govern the real and nominal frictions are set to the values estimated
via Bayesian methods in Bayer et al. (2020b); see Table 3. It is noteworthy that the estimated
real frictions are up to one order of magnitude smaller than the typical representative-agent
model estimates. In particular, investment adjustment costs are substantially smaller. This
reflects the portfolio adjustment costs at the household level that generate inertia in aggregate
investment. The parameter values for nominal frictions are in line with the representative-
agent literature, with price and wage stickiness being less than 12 months on average.
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4 Results

We now present the results of various model simulations. In a first step, we develop our
baseline scenario for which we expose the model economy to the quarantine shock, or “Q-
shock” for short. For this baseline we do not consider fiscal transfers yet. We do so in a
second step, as we model the transfer payments of the CARES Act in addition to the Q-shock.
In this way, we allow for an interaction of the transfer payments and the Q-shock. This is
essential for our analysis because—while the model dynamics are approximated to be linear
at the aggregate level—the Q-shock generates income risk at the household level and the
transfers may offset this risk to the extent that they are conditional on being quarantined.
To make this point as transparent as possible, we zoom in on the design of the transfer
payments in a third step. Here we also quantify the transfer multiplier. Lastly, we report
results regarding the distributional effects of the Q-shock and the transfer component of the
coronavirus stimulus.

4.1 The Q-shock

First, to set the stage, we develop a baseline scenario for the lockdown. Recall that we
assume that the lockdown applies to workers, capital, and final-goods sectors alike. The
essential aspect of the lockdown in our analysis is that workers and capital under quarantine
do not receive income. Final goods of sectors under quarantine, in turn, are temporarily
unavailable for consumption. To quantify the extent of the lockdown, we target the increase
in unemployment as reflected in the initial claims to unemployment, shown in Figure 1 above.
Specifically, for the actual lockdown period between March and May 2020, we compute the
initial claims to unemployment in each month in excess of the monthly average during 2019:
it amounts to 6.4% of total employees in March, 12.7% in April, and 7.5% in May 2020.13

We use these numbers to specify the shock process that determines the probability of
being put under quarantine in the next month (pint ). In this way we assume an exogenous
increase in this probability starting in February 2020. At this point it becomes known that
6.4% of the labor force will be put under quarantine in March 2020. In March the outlook
deteriorates further and everybody understands that the probability of being put under
quarantine will be 12.7% in April. The situation in April is similar: it becomes known that
another 7.5% of the labor force will be quarantined as of May. Afterwards pint gradually
returns to its (almost negligible) steady-state value. For this purpose we assume an AR(1)

13An alternative strategy is to target the unemployment rate. This yields similar results, but we prefer
initial claims as a calibration target since misclassification is arguably less of an issue in this case (New York
Times, 2020).
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A) Prob. of entering Q-state B) Fraction in Q-state

Figure 2: Quarantine shock. Notes: Panel A shows workers’ probability of entering Q-state
in the next month (pint ), measured in percent of the labor force (Y-axis). X-axis
measures time in months. First period represents February 2020. Probability is
set to capture initial claims to unemployment in excess of average monthly value
for 2019. Panel B shows fraction of human capital, physical capital, and final
goods in Q-state (in percent).

process with persistence parameter 0.85.
We show the probability of entering the Q-state in Panel A of Figure 2. Here, and in

what follows, the horizontal axis measures time in months. The vertical axis measures the
deviation from the pre-shock level in percent. From an aggregate perspective the increase
in the probability represents the expected inflow into quarantine. From the household per-
spective it is important that the increase in the probability of entering the Q-shock becomes
known one month in advance. As a result, income risk already increases in February 2020,
and particularly so for low-income households for whom the quarantine incidence is twice as
high, as discussed in Section 3 above. Income risk remains elevated for as long as there is a
heightened inflow into the Q-state.

In Panel B of the same figure we display the stock of human capital put under quarantine
(measured again in percent of the total). Because low-skill workers are more likely to be
put under quarantine, the fraction of human capital under quarantine is somewhat smaller
than the fraction of workers under quarantine.14 The latter peaks in month 4 (April 2020)
at about 16% (not shown). We assume that the fraction of capital and final goods under
quarantine in each period equals the fraction of human capital under quarantine. Exit from
the Q-state is governed by pout, which we assume equals 0.5 throughout.

Figure 3 shows the adjustment of the economy to the Q-shock over time. We think of this
14In line with this, equal incidence of quarantine would make the recession deeper because a larger fraction

of human capital goes into quarantine. We find that the higher incidence of quarantine among income poor
households as documented by Mongey et al. (2020) reduces the recession by 2 percentage points.
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A) Output B) Consumption

C) Investment D) Effective capital

E) Effective hours F) Labor intensive margin

Figure 3: Dynamic adjustment to Q-shock. Notes: Impulse responses to quarantine shock
w/o fiscal stimulus; see Figure 2 for details on the Q-shock. Output, consump-
tion, and investment are deflated with the actual price index P F

t rather than the
ideal price index Pt. Effective capital, effective hours, and labor intensive margin
refer to model variables utHtKt, HtNt, and Nt, respectively. Y-axis: Percent
deviation from steady state. X-axis: Months.
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baseline scenario as a counterfactual outcome that would have been observed in the absence
of the fiscal stimulus provided under the CARES Act. Recall that time is measured against
the horizonal axis in months, so that the 24 periods under consideration represent a two-year
period. While quarantine starts only in period 2 (March) and reaches a maximum effect in
period 3 (Figure 2), the economy responds instantaneously to the Q-shock as it becomes
known in February 2020—the anticipation brings forward in time the adverse impact of the
shock. Put differently, what is originally a supply shock leads to demand shortage (see also
Guerrieri et al., 2020; Fornaro and Wolf, 2020).

Output (Panel A) drops by about 1%, consumption (Panel B) is fairly stable, but in-
vestment (Panel C) collapses by more than 5%. Importantly, these variables are deflated
with the actual price index rather than the ideal price index. The utilization of capital, that
is, the effective capital stock, declines likewise (Panel D). Initially, hours worked (Panel E)
also decline, even though the labor force has not been decimated by quarantine yet. In fact,
this is a response to the decline in aggregate demand and is achieved through a reduction of
hours worked per person: the adjustment of the intensive margin of labor is shown in Panel
F. On impact it declines sharply.

The effect of the shock becomes stronger over time and quickly so. The recessionary
impact reaches its peak in month 5 (June 2020). At this point, output, consumption, and
investment have declined strongly: the output loss amounts to almost 20% and investment
has declined by more than 30%. Hence, the recession triggered by the Q-shock is very deep,
in line with household expectations regarding the impact of the COVID-19 pandemic as
surveyed by Dietrich et al. (2020) in mid-March 2020. But afterwards the economy recovers
fast. After about 18 months output is almost back to its pre-shock level. This happens
against the backdrop of the massive drop in investment and requires using the factors of
production more intensively.

In sum, the quarantine shock reduces the effective labor force and the effective capital
stock in the economy and lowers its production potential. However, it also adversely impacts
aggregate demand, notably as it increases idiosyncratic income risk. Households try to self-
insure against this risk by increasing their liquid savings.15 In order to isolate the distinct
contribution of this channel to the transmission of the Q-shock, we simulate an alternative
version of the model for which we assume that income is pooled across households with the
same productivity. In this way we effectively provide insurance against idiosyncratic income
risk due to the Q-shock. Figure A.1 in the appendix shows the results. By and large they
are similar to the baseline in Figure 3, but we observe that the maximum output effect is

15In terms of aggregate dynamics this looks like a “risk premium shock,” a driving force of business cycles
in standard macro models (see, for instance, Smets and Wouters, 2007).
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reduced by about 2 percentage points—this reflects a muted contraction of consumption
once income risk is insured across households.

In addition, there is considerable amplification because a number of final goods become
temporarily unavailable due to the quarantine measure. To see this, we simulate a scenario
where final goods are not put under quarantine and show the result in the appendix (Figure
A.2). Observe that in this case, the Q-shock is much less contractionary than in the baseline
shown in Figure 3 above and, in fact, initially expansionary. Intuitively, as the Q-shock
restricts the supply of labor and capital, it puts upward pressure on marginal costs and
inflation, just like an adverse technology shock. Since monetary policy adjusts nominal
interest rates only sluggishly, real interest rates may decline in the short run. This, in turn,
leads households to increase consumption if the intertemporal elasticity of substitution is high
and the shock is short lived, as happens to be the case in our analysis. Yet, for our baseline
we also assume that final goods are put under quarantine. This, as explained in detail by
Guerrieri et al. (2020), restricts the impact of the Q-shock on inflation if the intratemporal
elasticity of substitution among final goods is low relative to the intertemporal elasticity of
substitution. This condition is also met under our calibration and ensures that the economy
contracts on impact.

4.2 The Coronavirus Stimulus

The CARES Act provides for substantial transfer payments to households in response to the
economic fallout from the pandemic. We are now in a position to quantify their effect on the
aggregate economy. In doing so, we seek to account for the circumstances under which the
transfer payments take place, namely, in an economy that has been exposed to the Q-shock.
As we will see shortly, this matters for the effects of the stimulus package.

The reason is that part of the transfers are paid conditional on the recipient being un-
employed. In this way, the transfer payment partly undoes the increase in income risk due
to the Q-shock. In our model simulations, we capture this conditional transfer by paying a
lump-sum transfer equivalent of $600 per week to those households that lose income because
they are put under quarantine. In total, this implies payments of about $780 billion. This
is more than the $250 billion earmarked under the CARES Act because, in our simulation,
the increase in unemployment is larger and the duration of the payment not limited to the
period up to July 2020. Importantly, in order to limit income risk ex ante, the expected
transfer payment is essential to mitigate the impact of the Q-shock.16

The other transfer component under the CARES Act, instead, is basically unconditional:
16The original cost estimates assume an increases in the unemployment rate to 12% and while payments

did expire in July 2020 this seemed an unlikely scenario during the height of the pandemic.
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a one-time payment of $1,200 to any adult in the U.S. population, except for households in
the top 10% of the income distribution. This is a minor form of conditionality and we refer
to “unconditional transfers” for simplicity. In the simulations, we assume that the lump-sum
payments arrive somewhat gradually to eligible households: disbursement begins in period
2 (March 2020) and is phased out over time (persistence parameter 0.5) so that the total
transfer to an entitled person amounts to $1,200.

Figure 4 shows the adjustment of the economy to the Q-shock with and without the
transfer payments under the CARES Act. The blue solid lines serve as a natural benchmark:
they reproduce the results shown in Figure 3 above, namely the adjustment that would take
place in the absence of the CARES-Act transfer. The red dashed lines show the response
of the economy to the same shock under the assumption that the transfers are put in place.
They clearly make a difference for the adjustment dynamics. With transfers to households,
the recessionary impact of the Q-shock is substantially reduced. Output, shown in Panel A,
declines by 15% rather than by 20% under the no-transfer benchmark. This is because the
transfer is successful in stabilizing consumption (Panel B). It reduces its maximum decline
to about 13% as opposed to almost 20% under the no-transfer benchmark. Note also that
the effect of the transfer payment is strongest during the first six months. This is the period
when most of the transfer payment comes online.

The transfer payments also mitigate the adverse impact of the Q-shock on investment
(Panel C), although to a lesser extent than in the case of consumption. Panel D shows the
response of the policy rate. It is declining somewhat in the absence of transfers because in
this case the Q-shock is deflationary (Panel E). This is because a fraction of final goods is also
put under quarantine (Guerrieri et al., 2020). In the presence of transfers, inflation increases
gradually and plateaus at some 2% above its steady-state level after about 12 months. This,
in turn, induces a gradual increase in the policy rate. Actual inflation fell gradually from
March to May 2020, but has been rising afterwards. Still, the Federal Reserve has kept policy
rates near zero in the wake of the Q-Shock. We explore the effect of a more accommodative
monetary policy below.

Lastly, we turn to the response of public debt. Panel F shows the adjustment of the
debt-to-output ratio to the Q-shock, again with and without transfer payments. It increases
in both instances, but in the short run the increase is actually smaller in the case where there
are transfer payments.17 However, in the medium term, as the output effect of the transfer
payments dissipates and interest rates pick up, the debt-to-output ratio exceeds the level

17Erceg and Lindé (2014) identify conditions under which fiscal stimulus may lower the debt-to-output
ratio, notably in the context of the zero lower bound. Similarly, there is evidence that contractionary fiscal
policy measures can at times raise the debt-to-output ratio (Born et al., 2020).
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A) Output B) Consumption

C) Investment D) Policy rate

E) Inflation F) Debt-to-output ratio

Figure 4: Dynamic adjustment to Q-shock with and without fiscal transfers. Notes: Red
dashed line shows response w/ transfers, blue solid line w/o; see Figure 2 for
details on the Q-shock. Inflation is computed using the actual price index P F

t

rather than the ideal price index Pt. Y-axis: Percentage deviation from steady
state, annualized percentage points in case of (y-o-y) inflation and interest rate.
X-axis: Months.

under the no-transfer benchmark. At the end of the period under consideration, the debt
ratio is about 5 percentage points higher. This difference is rather lasting because we assume
that debt is only slowly reverting back to the steady-state level—as taxes and government
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spending adjust in equal proportions in order to stabilize debt (not shown).18

4.3 The Transfer Multiplier

We finally turn to the question that motivates our analysis: How large is the transfer mul-
tiplier? As our discussion above made clear, the answer depends crucially on whether the
transfer is conditional or not. Panel A in Figure 5 displays the transfer multipliers for our
baseline specification. Here, we measure time, as before, in months along the horizontal
axis and the cumulative multiplier along the vertical axis: the cumulative output change in
all periods up to horizon k that is due to the transfer, divided by the cumulative transfer
payments up to the same horizon (see, for instance, Ramey, 2019). In the figure, we show
the cumulative transfer multiplier from period 3 onward because the largest part of transfer
payments comes online only later.19

The red solid line represents the multiplier of the total transfers to households provided
for by the CARES Act. Initially, that is, in period 3, the cumulative multiplier is about 0.75.
This means that for every dollar disbursed to households up to April, total income increases
by 75 cents on average. This is higher than the range of values obtained in model-based
analyses (Coenen et al., 2012; McKay and Reis, 2016; Giambattista and Pennings, 2017),
but squares with recent time-series evidence (Gechert et al., 2020). To shed more light on
this result, we decompose the multiplier: the black dashed line and the green dashed-dotted
line in panel A) represent the multiplier for the conditional and the unconditional transfer
under the CARES Act. Here we obtain values of 1.5 and 0.25, respectively. The overall
multiplier is a weighted average of the two.

The difference is rather stark: the conditional transfer multiplier is about 6 times as
large as the unconditional transfer multiplier. Two aspects are key. First, the conditional
transfer is directed to the unemployed who have a high marginal propensity to consume.
Importantly, this matters already in the impact period. As shown by Auclert et al. (2018),
in HANK models such as ours, anticipated income changes impact current spending via
the “intertemporal marginal propensity to consume”: households that operate near their
liquidity constraint may raise expenditures in response to an expected increase in income
in the near future.20 Second, the conditional transfer boosts aggregate demand already in

18We abstract from the possibility that the economic fallout from the COVID-19 pandemic impairs fiscal
sustainability, since it is arguably less of an issue in the U.S. Huertgen (2020) analyzes fiscal sustainability
during the COVID-19 pandemic for selected euro-area countries.

19In fact, in the very first period there is no payout and the (anticipated) transfer boosts output. As result
the multiplier is infinite.

20This effect is absent in TANK models since there the borrowing constraint of non-optimizing households
is always binding.
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A) Baseline B) Insurance against Q-shock

C) No goods under quarantine D) Unresponsive monetary policy

Figure 5: Cumulative transfer multipliers. Notes: Cumulative multiplier computed as∑k
j=1 yi/

∑k
j=1 ti, where yi is the deviation of output from baseline, ti is the

transfer payment (both measured in percentage points of steady-state output),
and k is the time since announcement in period 1 (February 2020), measured
along the horizontal axis. We report multipliers from period k = 3 onward, since
transfers are zero or very small in the first two periods.

period 1 because it reduces income risk. This happens even though transfers have not yet
materialized. We also note that over time the cumulative multiplier of conditional transfers
declines sharply with receding income risk. Instead, the unconditional transfer multiplier
increases somewhat in the medium run. As a result, cumulative multipliers become more
aligned for longer horizons. For a two-year horizon we obtain values between 0.5 and 0.7.

To see more in detail how both types of transfers work, we contrast in Figure 6 the ad-
justment dynamics under the no-transfer benchmark with the outcome that would obtain if
either only conditional or unconditional transfers were put in place. The blue solid lines rep-
resent the benchmark, as already shown in Figure 3 above. The black dashed line represents
the dynamics in the case where there is the conditional transfer, and the green dash-dotted
line represents the case of unconditional transfers. The unconditional transfer, worth 5% of
quarterly GDP, is paid out lump-sum to all households starting in March (period 2). The
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A) Output B) Consumption

C) Investment D) Policy rate

E) Inflation F) Debt-to-output ratio

Figure 6: Dynamic adjustment to Q-shock w/o, w/ unconditional, and w/ conditional fiscal
transfers. Notes: Black dashed line shows response w/ conditional transfers,
green dash-dotted w/ unconditional transfers, and blue solid line w/o; see Figure
2 for details on the Q-shock. For variable descriptions, see Figure 3. Y-axis:
Percentage deviation from steady state, annualized percentage points in case of
(y-o-y) inflation and interest rate. X-axis: Months.

strongest effect takes places in the month when the transfer actually takes place, but the
overall impact is moderate. The conditional transfer, instead, generates effects that are both
stronger but also more front-loaded, for reasons given above. Recall that the two trans-
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fers differ in size, with conditional transfers roughly three times as large as unconditional
transfers. Yet this difference in size does not matter for the cumulative multiplier since we
normalize the output effect with the total amount of transfers in each instance.

We shed further light on the conditional transfer by considering once more an economy
in which the income of workers with the same productivity level is pooled—thereby pro-
viding insurance against the idiosyncratic income risk caused by the Q-shock. As already
discussed in Section 4.1 above, this kind of insurance dampens the output drop by about 2
percentage points but does not alter the adjustment dynamics much, see again Figure A.1 in
the appendix. However, insurance of income risk is crucial for the conditional multiplier, as
Panel B of Figure 5 shows: here we display cumulative multipliers for the economy with in-
surance and observe a strong decline in the multiplier for conditional transfers relative to the
baseline shown in Panel A of the same figure. In fact, the conditional-transfer multiplier is
now roughly of the same size as the unconditional-transfer multiplier. Hence, in the context
of our analysis, conditional transfers are particularly effective to the extent that they offset
household income risk. The fact that they are targeted to households with higher MPCs
plays a lesser role from a quantitative point of view.

In Panel C of Figure 5, we report the cumulative multiplier for a Q-shock scenario in
which no final goods are put under quarantine. As discussed above, this plays a central role
for the adjustment dynamics to the Q-shock. And yet, we find that whether or not final goods
are put under quarantine is of little consequence for the transfer multiplier. The cumulative
multipliers shown in Panel C resemble those shown in Panel A rather closely. This holds
for conditional and unconditional transfers alike and hence for the overall multiplier effect
of the transfers under the CARES Act.

Lastly, we briefly turn to how monetary policy impacts the multiplier. That it plays a
key role for the fiscal transmission mechanism has been a major theme in the analysis of
the government spending multiplier (Christiano et al., 2011; Leeper et al., 2017; Woodford,
2011). Here, we zoom in on its role for the impact of transfers under the CARES Act.
Specifically, we compare the results for the baseline to an alternative specification for which
we assume that monetary policy is less responsive to inflation. We do so by assuming
substantial interest rate smoothing: we set ρR = 0.997 in the interest rate rule above and
refer to this case as “unresponsive” monetary policy.21 We report the cumulative multiplier
under the unresponsive monetary policy in Panel D of Figure 5. We find that multipliers
are strongly shifted upwards. The values for the cumulative multiplier in period 3 are now
about unity (overall), 3.5 (conditional transfers) and 0.5 (unconditional transfers). This is

21We leave a full-fledged analysis of the zero-lower-bound constraint or a passive monetary policy regime
for further research.
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because under the unresponsive monetary policy, the interest rate increases less in the short
run as the inflationary pressure due to the fiscal stimulus mounts. As the real interest rate
increases less, there is less crowding out of private expenditure.

4.4 Distributional Effects

The distributional effects of the economic fallout from the COVID-19 pandemic in general
and the lockdown measures in particular are widely debated (e.g. Adams et al., 2020). Since
our framework puts household heterogeneity front and center, both in terms of the impact
of the Q-shock and in terms of the transfer payments, it lends itself naturally to assessing
distributional aspects. In what follows we report the response of Gini coefficients to the
Q-shock and to the transfer payments, but leave a full-fledged analysis of their distributional
effects for future work.

Figure 7 displays the impulse responses of various Gini coefficients to the Q-shock as such
(blue solid line) and the Q-shock coupled with the transfer payments under the CARES Act
(red dashed line). The Q-shock as such drives up the Gini coefficients of total income and
labor earnings, shown in panels A and B. They peak with an increase of 20% in months 3 to
4 when the fraction of households in quarantine is largest. Likewise, the Q-shock also pushes
up the consumption Gini (Panel C) and the wealth Gini (Panel D) which, after a brief initial
decline, eventually peak at about 3% and 0.7% above their respective steady-state levels.

To understand the non-monotonic adjustment dynamics, note that the Q-shock initially
affects investment most strongly. This, in turn, has a strong adverse impact on the wealthiest
households because the price of capital—in line with the initial stock market crash in March
2020—falls drastically and accounts for the initial reduction of consumption and wealth
inequality. However, once a substantial fraction of households is in quarantine, all four
measures of inequality increase.

The transfer payments under the CARES act are quite successful in containing the in-
crease of inequality caused by the Q-shock. The stimulus is highly progressive in its distri-
butional consequences such that the Gini coefficients of earnings and income actually fall
by up to 10% during the first six months, when most payments are made, and are basically
flat afterwards. This substantially lowers consumption inequality relative to the case w/o
transfers. The wealth Gini shows the starkest contrast in responses without and with trans-
fers. The build-up of public debt due to the transfers under the CARES Act pushes up real
interest rates on liquid assets and therefore lowers the liquidity premium for an extended
period. This impacts wealthier households most strongly, as they hold most of the illiquid
assets (see also Bayer et al., 2020a). As caveat, we note that our analysis abstracts from
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A) Total Income Gini B) Labor Earnings Gini

C) Consumption Gini D) Wealth Gini

Figure 7: Dynamic adjustment to Q-shock with and without fiscal transfers. Notes: Red
dashed line shows response w/ transfers, blue solid line w/o; see Figure 2 for de-
tails on the Q-shock. Y-axis: Percentage deviation from steady state, annualized
percentage points in case of (y-o-y) inflation and interest rate. X-axis: Months.

discretionary Fed policies and other factors that might have stabilized asset prices. There-
fore the model predictions for the response of the Ginis may not directly comparable to the
actual developments in the US during 2020.
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5 Conclusion

How large is the transfer multiplier? As always the answer is: “it depends.” Still in this
case, this is particularly true. For the effects of the transfer payments implemented under
the CARES Act differ fundamentally depending on whether transfers are conditional on
the recipient being unemployed or not. To see this, we develop a benchmark scenario of
a COVID-19-induced recession. It captures, in particular, that a substantial fraction of
the economy has been shut down in response to the COVID-19 pandemic. Specifically, our
model-based analysis features a quarantine state for households that reduces the effective
amount of labor and capital in aggregate production. At the same time, a fraction of final
goods become temporarily unavailable for consumption. This “Q-shock” generates a large
recession: economic activity declines by almost 20% in the absence of transfers.

While the shock impacts the economy through various channels, a key aspect for our
analysis is that it raises income risk at the household level. This is essential for understanding
why conditional transfers are very effective in stabilizing the economy: by making payments
conditional on the income loss in the Q-state, they limit income risk from an ex-ante point
of view. In addition, although this matters less from a quantitative point of view, they are
targeted to households with a high marginal propensity to consume. For the short run, we
find a multiplier of conditional transfers of about 1.5. This is exceptionally high compared
to the values reported in the literature which has not allowed for an insurance effect of
conditional transfers. Instead, we obtain a short-run multiplier of 0.25 for unconditional
transfers—in line with much of the earlier literature on the transfer multiplier.

Transfers to households are only a part of the fiscal stimulus under the CARES Act.
Among other things it also provides for transfers to firms. It would be interesting to assess
the impact of these policies as well as other fiscal-policy measures implemented in countries
outside of the U.S. As our analysis makes clear, the effect of such measures is bound to
interact in non-trivial ways with the specific conditions under which they are put in place.
We leave a more comprehensive analysis for future research.
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A Data for Calibration

Mean illiquid assets. Fixed assets (NIPA table 1.1) over quarterly GDP (excluding net
exports; see below), averaged over 1954-2015.

Mean liquidity. Gross federal debt held by the public as percent of GDP (FY-
PUGDA188S). Available from 1954-2015.

Fraction of borrowers. Taken from the Survey of Consumer Finances (1983-2013); see
Bayer et al. (2019) for more details.

Average top 10% share of wealth. Source is the World Inequality Database (1954-
2015).
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B Additional Figures

A) Output B) Consumption

C) Investment D) Effective capital

E) Effective hours F) Labor intensive margin

Figure A.1: Dynamic adjustment to Q-shock—perfect insurance against Q-shock. Notes:
Impulse responses to quarantine shock without fiscal stimulus, see Figure 2
for details on the Q-shock. For variable descriptions; see Figure 3. Y-axis:
Percent deviation from steady state. X-axis: Months.
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A) Output B) Consumption

C) Investment D) Effective capital

E) Effective hours F) Labor intensive margin

Figure A.2: Dynamic adjustment to Q-shock—no unavailability of varieties. Notes: Im-
pulse responses to quarantine shock without fiscal stimulus, see Figure 2 for
details on the Q-shock. For variable descriptions; see Figure 3. Y-axis: Percent
deviation from steady state. X-axis: Months.
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