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We show how a heterogeneous-agent New-Keynesian (HANK)
model with incomplete markets and portfolio choice can be esti-
mated in state space using a Bayesian approach. To render esti-
mation feasible, the structure of the economy can be exploited and
the dimensionality of the model automatically reduced based on the
Bayesian priors. We apply this approach to analyze how much in-
equality matters for the business cycle and vice versa. Even when
the model is estimated on aggregate data alone and with a set of
shocks and frictions designed to match aggregate data, it broadly
reproduces observed US inequality dynamics.
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A new generation of monetary business cycle models with heterogeneous agents
and incomplete markets (known as HANK models) has become popular. This new
class of models implies new transmission channels of monetary policy.1 and fiscal
policy2 as well as new sources of business cycle fluctuations operating through
household portfolio decisions.3 Much of this literature to date has focused on the
importance of household heterogeneity for specific transmission channels, shocks,
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1Auclert (2019) analyzes the redistributive effects of monetary policy, Kaplan, Moll and Violante
(2018) show the importance of indirect income effects, and Luetticke (2021) analyzes the portfolio rebal-
ancing channel of monetary policy. McKay, Nakamura and Steinsson (2016) examine the effectiveness
of forward guidance.

2Auclert, Rognlie and Straub (2018), Bayer, Born and Luetticke (2023), and Hagedorn, Manovskii
and Mitman (2019) discuss fiscal multipliers, McKay and Reis (2016, 2021) discuss the role of automatic
stabilizers.

3Bayer et al. (2019) quantify the importance of shocks to idiosyncratic income risk, and Guerrieri and
Lorenzoni (2017) consider the effects of shocks to the borrowing limit.
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or puzzles. Much emphasis has been placed on matching the stationary distri-
bution of household characteristics, while the dynamic responses of the model at
both the macro and micro levels have been left largely unrestricted by the data.
This paper presents a novel approach that uses Bayesian techniques to estimate
the dynamic properties of Heterogeneous Agent New Keynesian (HANK) models
and fills this gap.

This is an important milestone because, first, it expands the data that can be
used in the estimation of macroeconomic models to include the dynamics of cross-
sectional observations at the household (and potentially firm) level. Additional
data in the estimation of these models has far-reaching implications, from model
selection to the identification of economic mechanisms. It will also improve our
understanding of the distributional consequences of the business cycle and the
policy response to it. Second, our method allows these models to be rigorously
tested and compared with the established representative agent literature. In this
respect, our method provides an important bridge between the heterogeneous
agent literature—with its focus on stationary distributions—and the business
cycle literature—with its focus on aggregate shocks and frictions.

To remain in line with conventional methods for solving and estimating dy-
namic stochastic general equilibrium models, we propose to estimate HANK mod-
els in their state-space representation, too.4 This leverages the experience that
economists have with state-space methods and the vast toolset that has devel-
oped around them: for example, obtaining variance decompositions at business
cycle frequencies (Uhlig, 2001), using different sampling and filtering techniques
(Acharya et al., 2021; Herbst and Schorfheide, 2014, 2015), or dealing with mixed-
frequency data. Our state-space approach also allows to translate established
non-linear solution methods (occasionally binding constraints (Guerrieri and Ia-
coviello, 2015) or higher-order perturbations (Fernández-Villaverde et al., 2015))
easily to the HANK setting.

To obtain a state-space representation, we follow Reiter (2009) and linearize
the model, but then exploit two aspects for estimation: First, the economy can
be written in a modular way, separating the components that only matter for
the dynamics and the elements that reflect household heterogeneity. This im-
plies that re-linearizing the HANK model after a parameter change is as little
numerically demanding as for the representative agent model (RANK) when esti-
mating aggregate shocks and frictions. The modularity also allows us to provide
a toolbox for estimating HANK models where the aggregate part can be easily
customized. Second, we develop a novel model reduction approach that emerges
naturally from the Bayesian setting and drastically speeds up the solution of the
linearized economy. We show that the speed and accuracy of the proposed solu-
tion method is comparable to the sequence-space approaches proposed by Auclert
et al. (2021) and Boppart, Krusell and Mitman (2018).

4Auclert et al. (2021) propose an alternative technique for estimating heterogeneous agent models
that solves the model in sequence space and uses the resulting MA-∞ representation for estimation.
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Concretely, we extend the method of Bayer and Luetticke (2020) with a more
flexible and better informed treatment of the value and distribution functions.
This results in an arbitrarily precise approximation of the full model using infor-
mation from the stationary equilibrium. Our novel Bayesian reduction technique
then exploits the fact that we have prior information for model reduction, allow-
ing us to go beyond what the literature has suggested. Specifically, we solve the
model once under the parameterization implied by the mode of the prior distribu-
tion and use this solution to derive a factor representation of the heterogeneous
agent part of the model. We show that this factor representation can be used
for a very strong model reduction, even as the parameters change. It reduces
the system of difference equations from initially more than 660,000 variables and
equations to 2,900 in a first step based on the model’s stationary equilibrium, and
finally to less than 600 using the factor representation of the model’s dynamics
under the prior. The key here is the same insight that makes sequence space
methods feasible: Household decisions are driven by a small set of prices and
their limited and tractable dynamics.

As an application, we study a business cycle model in the spirit of Smets and
Wouters (2007) and fuse it with the New-Keynesian incomplete markets model
of Bayer et al. (2019). This fused model then features capacity utilization, a
frictional labor market with sticky wages and progressive taxation, as well as the
battery of shocks that drive business cycle fluctuations in estimated New Key-
nesian models: aggregate and investment-specific productivity shocks, wage and
price markup shocks, monetary and fiscal policy shocks, risk premium shocks.
To this battery of standard RANK model business cycle shocks, we add two ad-
ditional incomplete market-specific shocks: shocks to the progressivity of taxes
and shocks to idiosyncratic productivity risk. With this model at hand, we tackle
three questions: First, to what extent does the inclusion of incomplete markets
change our view of US business cycles? Second, can the model capture the dy-
namics of US inequality? Third, if so, which business cycle shocks and policies
are important drivers?

In our model, precautionary motives play an important role for consumption-
savings decisions. Since individual income is subject to idiosyncratic risk that can-
not be directly insured and borrowing is constrained, households structure their
savings decisions and portfolio allocations to optimally self-insure and achieve
consumption smoothing. In particular, we assume that households can either
hold liquid nominal bonds or invest in illiquid physical capital. Capital is illiquid
since its market is segmented and households participate only from time to time.
This portfolio-choice component, which gives rise to an endogenous liquidity pre-
mium, and the presence of occasional hand-to-mouth consumers lead the HANK
model to have rich distributional dynamics in response to aggregate shocks.

To answer the first question of whether incomplete markets change our view of
US business cycles, we estimate the HANK model using the same set of aggregate
shocks and observables as in Smets and Wouters (2007), covering the period 1954
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to 2019, and compare it to the representative household analog (RANK). We find
that both models tell a similar story about the business cycle, but there are some
differences because the incomplete market structure closely links aggregate con-
sumption to the distributional consequences of shocks. In particular, technology
shocks become more important for consumption growth in HANK, at the expense
of markup shocks, because a significant fraction of households has few assets and
a high marginal propensity to consume out of wage income.

These distributional consequences are also important for our second question.
Here, we find that the HANK model can simultaneously account for the dynam-
ics of the US business cycle and inequality between 1954 and 2019. Our model
translates the business cycle shocks estimated from aggregate data into persistent
movements in wealth and income inequality. These movements are broadly con-
sistent with the U-shaped evolution of the wealth and income shares of the top
10 percent of US households in the data.5

Based on this finding, we then answer our third question, what drives US in-
equality, by re-estimating the model. We now include the top 10 shares as observ-
ables and allow for two additional, also observed, variables that directly affect the
distribution of income: the progressivity of taxes and idiosyncratic income risk.
We find that income risk partially replaces risk premium shocks in explaining
aggregate consumption growth. Shocks to the progressivity of taxes have some
importance for wealth inequality, as they persistently change the net income dis-
tribution and self-insurance incentives.

These findings are also reflected in historical decompositions of US inequality.
We find that wealth inequality, as measured by the share held by the top 10 per-
cent, is largely driven by two factors: shocks to investment technology and shocks
to price markups. Shocks to technology have strong effects on asset prices and
returns, and through them have persistent effects on the distribution of wealth
(as shown empirically in Kuhn, Schularick and Steins, 2020). Key to this are
portfolio differences between the rich and the poor. The former hold their wealth
in liquid, low-return assets, while the latter hold it in illiquid form. Price markup
shocks work through the income distribution, and we estimate that the persistent
rise in income inequality since the 1980s is related to higher price markups. How-
ever, there is some tension between the high volatility of markups in the model
and the low cyclical volatility of the top income share.

To our knowledge, our paper is one of the first to provide an encompassing esti-
mation of shocks and frictions using a HANK model with portfolio choice. Most
of the literature on monetary heterogeneous-agent models has used a calibration
approach.6 Auclert, Rognlie and Straub (2020), Hagedorn, Manovskii and Mit-

5We focus on the top 10 shares from the World Inequality Database because these measures are
available since the 1950s and are most similar across alternative data sources, such as the Survey of
Consumer Finances; see Kopczuk (2015) and Bricker et al. (2016).

6See, for example, Auclert, Rognlie and Straub (2018); Ahn et al. (2018); Bayer et al. (2019); Broer
et al. (2019); Challe and Ragot (2015); Den Haan, Rendahl and Riegler (2017); Ferriere and Navarro
(2023); Gornemann, Kuester and Nakajima (2012); Guerrieri and Lorenzoni (2017); McKay, Nakamura
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man (2018), and Bayer, Born and Luetticke (2023) go beyond calibration but use
a limited information approach based on impulse response function matching.

The inclusion of distributional data in the estimation is novel and potentially
informative for identifying the sources of business cycle fluctuations. Our paper
is related to Chang, Chen and Schorfheide (2021) in the sense that it estimates
a state-space model of both distributional (cross-sectional) data and aggregates.
Chang, Chen and Schorfheide (2021) find that shocks to the cross-sectional dis-
tribution of income, in the sense of an SVAR, have only a small impact on the
aggregate time series. Our finding that structural estimates are relatively ro-
bust to the inclusion or exclusion of cross-sectional information is similar to their
results.7 The estimated muted importance of cross-sectional shocks is also con-
sistent with the findings of Berger, Bocola and Dovis (2023), who use a business
cycle accounting approach. Bilbiie, Primiceri and Tambalotti (2022) estimate a
tractable heterogeneous agent model in state space form (two types of agents
with stochastic transitions between types) using a full information approach and
data on the cross-sectional dispersion of labor earnings and income. They find
amplification of aggregate shocks with heterogeneity.

Our findings add some insights to the literature on the drivers of inequality.8
Kaymak and Poschke (2016) and Hubmer, Krusell and Smith Jr (2020) use quan-
titative models to study permanent changes in the US tax and transfer system and
the variance of income. In terms of methods, these papers solve for steady-state
transitions of calibrated models, while we estimate our model using US macro
and micro time series data. They find that tax and transfer changes can explain
a significant part of the recent increase in wealth inequality. Our paper is the
first to quantify the distributional consequences of all standard business cycle
shocks and to estimate their importance in explaining US inequality. In addition
to business cycle shocks, our model incorporates changes in the US tax system
and income risk, and allows us to compare their relative importance for the evo-
lution of income and wealth inequality. We find that business cycle shocks are
important for wealth inequality through their effect on asset prices and returns.

The remainder of this paper is organized as follows: Section I describes our
model economy, its sources of fluctuations and frictions. Section II provides details
on the numerical solution method and the estimation technique. Section III
presents our model variants, the parameters that we calibrate to match steady-
state targets, prior and posterior distributions for the remaining parameters that
we estimate, and an assessment of our solution approach based on the estimated
posterior distribution. It also provides an overview of the data we use in our

and Steinsson (2016); McKay and Reis (2016); Ravn and Sterk (2017); Sterk and Tenreyro (2018); Wong
(2019).

7Our approach is different from and simpler than the method proposed by Liu and Plagborg-Møller
(2023), which includes full cross-sectional information in the estimation of a heterogeneous agent DSGE
model. In contrast, we use the model only to fit certain generalized cross-sectional moments.

8There is a growing literature on inequality dynamics: on the theoretical side, e.g., Gabaix et al.
(2016) and on the empirical side, e.g., Heathcote, Perri and Violante (2010), Piketty and Saez (2003), or
Saez and Zucman (2016).
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estimation. Section IV discusses the estimated shocks and frictions that drive the
US business cycle and inequality dynamics. Section V concludes. An appendix
follows.

I. Model

We model an economy composed of a firm sector, a household sector, and a gov-
ernment sector. Of these three sectors only the household sector deviates from
the standard New Keynesian DSGE model structure as in Smets and Wouters
(2007) or Christiano, Eichenbaum and Evans (2005). In detail, the firm sector
comprises (a) final goods producers who bundle the intermediate goods; (b) inter-
mediate goods producers who rent out labor services and capital from perfectly
competitive markets, but face monopolistic competition in the goods market as
they produce differentiated goods and set prices; (c) producers of capital goods
who turn final goods into capital subject to adjustment costs; (d) labor packers
who produce labor services combining differentiated labor from unions that differ-
entiate raw labor rented out from households. Price setting for the intermediate
goods as well as wage setting by unions is subject to a friction à la Calvo (1983).

Households earn income from supplying (raw) labor and capital and from own-
ing the firm sector, absorbing all its rents that stem from the market power of
unions and intermediate goods producers, and decreasing returns to scale in capi-
tal goods production. They face idiosyncratic income risk against which they can
self-insure by trading liquid and illiquid assets giving rise to endogenous hetero-
geneity. We also consider a representative-agent variant with full insurance.

The government sector runs both a fiscal authority and a monetary authority.
The fiscal authority levies progressive taxes on labor incomes and profits, issues
government bonds, and adjusts expenditures to stabilize debt in the long run and
aggregate demand in the short run. The monetary authority sets the nominal
interest rate on government bonds according to a Taylor rule.

A. Firm sector

Since the firm sector involves dynamic decisions, we need to make an assumption
about the discount factor used in these decisions. With household heterogeneity,
stochastic discount factors across households might differ. For this reason, we
make the simplifying assumption that the firm sector is run by managers that
are risk neutral, have no asset market access, but have the same time preferences
as households.9 Managers are a mass-zero group in the economy so that their
consumption does not show up in any resource constraint and as a result all
profits of the firm sector go to households.

9Since we solve the model by a first-order perturbation in aggregate shocks, fluctuations in stochastic
discount factors are irrelevant.
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Final goods producers

Final goods producers bundle varieties j of differentiated goods according to
the Dixit-Stiglitz aggregator

(1) Yt =

(∫
y

ηt−1
ηt

jt dj

) ηt
ηt−1

,

with elasticity of substitution ηt. Each of these differentiated goods is offered at

price pjt, so that the aggregate price level is given by Pt =
(∫

p1−ηt
jt dj

) 1
1−ηt and

the demand for each of the varieties is

(2) yjt =

(
pjt
Pt

)−ηt

Yt .

Intermediate goods producers

Intermediate goods are produced with a constant returns to scale production
function

(3) Yjt = ZtN
α
jt(ujtKjt)

(1−α),

where α is the labor share in production, Zt is total factor productivity that
follows an autoregressive process in logs, Njt is the labor bundle firm j hires
at time t, and ujtKjt are capital services taking into account utilization ujt,
i.e., the intensity with which the capital stock Kjt is used. An intensity higher
than normal results in increased depreciation of capital according to δ (ujt) =

δ0+ δ1 (ujt − 1)+ δ2/2 (ujt − 1)2, which, assuming δ1, δ2 > 0, is an increasing and
convex function of utilization. Without loss of generality, capital utilization in
steady state is normalized to 1, so that δ0 denotes the steady-state depreciation
rate of capital goods.

Given demand, the producer minimizes costs, wF
t Nt − [rt + qtδ(ujt)]Kt, where

rt and qt are the rental rate and the (producer) price of capital goods, respectively,
and wF

t is the real wage the firm faces. Factor markets are perfectly competitive.
Hence, the first-order conditions for labor and effective capital read

wF
t = αmcjtZt

(
ujtKjt

Njt

)1−α

(4)

and rt + qtδ(ujt) = ujt(1− α)mcjtZt

(
Njt

ujtKjt

)α

,(5)
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where mcjt is the marginal cost of firm j. The optimal utilization is given by

(6) qt [δ1 + δ2(ujt − 1)] = (1− α)mcjtZt

(
Njt

ujtKjt

)α

.

Combining the three first-order conditions, it is easy to see that given the constant
returns to scale production function, marginal costs are constant across producers
mcjt = mct.

We assume that intermediate goods producers face price adjustment frictions
à la Calvo (1983); and the firms’ managers maximize the present value of real
profits subject to this price adjustment friction and the demand curve (2). They
hence maximize

(7) E0

∞∑
t=0

βtλt
Y (1− τLt )Y

1−τPt
t

{(
pjtπ̄

t
Y

Pt
−mct

)(
pjtπ̄

t

Pt

)−ηt
}1−τPt

,

with a time-constant discount factor β. Prices are indexed to the steady-state
inflation rate π̄ and can be discretionally adjusted price with probability 1− λY .
The parameters τPt and τLt characterize the progressivity and level of the tax
schedule, which we discuss in more detail, when describing the household sector.

The corresponding first-order condition for price setting implies a Phillips curve

(8) log
(πt
π̄

)
= βEt log

(πt+1

π̄

)
+ κY

(
mct − 1

µY
t

)
,

where we dropped all terms irrelevant for a first-order approximation and defined
κY = (1−λY )(1−λY β)

λY
. Here, πt is the gross inflation rate of final goods, πt := Pt

Pt−1
,

mct :=
MCt
Pt

is the real marginal costs, and µY
t = ηt

ηt−1 is the target markup. This
target fluctuates in response to markup shocks, ϵµYt , and follows a log AR(1)
process.

Capital goods producers

Capital goods producers take the relative price of capital goods, qt, as given in
deciding about their output, i.e., they maximize

(9) E0

∞∑
t=0

βtIt

{
Ψtqt

[
1− ϕ

2

(
log

It
It−1

)2
]
− 1

}
,

where ϕ controls the strength of the quadratic investment adjustment costs and
Ψt governs the marginal efficiency of investment à la Justiniano, Primiceri and
Tambalotti (2011), which follows an AR(1) process in logs and is subject to shocks
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ϵΨt .10
Optimality of the capital goods production requires (again dropping all terms

irrelevant up to first order)

(10) Ψtqt

[
1− ϕ log

It
It−1

]
= 1− βEt

[
Ψt+1qt+1ϕ log

(
It+1

It

)]
,

and each capital goods producer will adjust its production until (10) is fulfilled.
Since all capital goods producers are symmetric, we obtain as the law of motion

for aggregate capital:

(11) Kt − (1− δ(ut))Kt−1 = Ψt

[
1− ϕ

2

(
log

It
It−1

)2
]
It .

The functional form assumption implies that investment adjustment costs are
minimized and equal to 0 in the steady state.

Labor packers and unions

Workers sell their labor services to a mass-one continuum of unions indexed
by j, each of whom offers a different variety of labor to labor packers who then
provide labor services to intermediate goods producers. Labor packers produce
final labor services according to the production function

(12) Nt =

(∫
n̂

ζt−1
ζt

jt dj

) ζt
ζt−1

,

out of labor varieties n̂jt with elasticity of substitution ζt. Cost minimization by
labor packers implies that each variety of labor, each union j, faces a downward-
sloping demand curve

(13) n̂jt =

(
Wjt

WF
t

)−ζt

Nt ,

where Wjt is the nominal wage set by union j and WF
t is the nominal wage at

which labor packers sell labor services to intermediate goods producers.
Since unions have market power, they pay the households a wage lower than

the price at which they sell labor to labor packers. Given the nominal wage
Wt at which they buy labor from households and given the nominal wage index
WF

t , unions seek to maximize their discounted stream of profits. However, they

10This shock has to be distinguished from a shock to the relative price of investment, which has been
shown in the literature (Justiniano, Primiceri and Tambalotti, 2011; Schmitt-Grohé and Uribe, 2012) to
not be an important driver of business cycles as soon as one includes the relative price of investment as
an observable. We therefore focus on the MEI shock.
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face a Calvo (1983)-type adjustment friction with indexation, where λw is the
probability to keep wages constant. They therefore maximize

(14) E0

∞∑
t=0

βtλt
w

WF
t

Pt
Nt

{(
Wjtπ̄

t
W

WF
t

− Wt

WF
t

)(
Wjtπ̄

t
W

WF
t

)−ζt
}
,

by setting Wjt in period t and keeping it constant except for indexation to π̄W ,
the steady-state wage inflation rate.

Since all unions are symmetric, we focus on a symmetric equilibrium and obtain
the linearized wage Phillips curve from the corresponding first-order condition as
follows, leaving out all terms irrelevant at a first-order approximation around the
stationary equilibrium

(15) log
(
πW
t

π̄W

)
= βEt log

(
πW
t+1

π̄W

)
+ κw

(
mcwt − 1

µW
t

)
,

with πW
t :=

WF
t

WF
t−1

=
wF

t

wF
t−1

πY
t being wage inflation, wt and wF

t being the respective

real wages for households and firms, mcwt = wt

wF
t

is the actual and 1
µW
t

= ζt−1
ζt

being
the target mark-down of wages the unions pay to households, Wt, relative to the
wages charged to firms, WF

t and κw = (1−λw)(1−λwβ)
λw

. This target fluctuates in
response to markup shocks, ϵµWt , and follows a log AR(1) process.

B. Households

There is a continuum of ex-ante identical households of measure one, indexed
by i. Households are infinitely lived, have time-separable preferences with time-
discount factor β, and derive felicity from consumption cit and leisure. They
obtain income from supplying labor, nit, from renting out capital, kit, and from
earning interest on bonds, bit. What is more, they receive profits of firms, ΠY

t =
(1−mct)Yt, and unions, ΠU

t = (wF
t −wt)Nt. Households pay taxes on labor and

profit income. Our baseline model features household heterogeneity. Households
differ in their productivity and in whether the obtain profit income. They face
incomplete markets in this baseline, and capital as an asset is illiquid while bonds
are liquid. For comparison, we also consider a representative-agent variant.

Preferences

With respect to leisure and consumption, households have Greenwood, Her-
cowitz and Huffman (1988) (GHH) preferences and maximize the discounted sum
of felicity

(16) E0 max
{cit,nit}

∞∑
t=0

βtu [cit −G(hit, nit)] .
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The maximization is subject to the budget constraints described further below.
The felicity function u exhibits a constant relative risk aversion (CRRA) with
risk aversion parameter ξ,

(17) u(xit) =
x1−ξ
it − 1

1− ξ
,

where xit = cit − G(hit, nit) is household i’s composite demand for goods con-
sumption cit and leisure and G measures the disutility from work. While nit

denotes a household’s labor supply, hit is the household’s labor productivity.11
Assuming a (progressive) income-tax schedule (which we borrow from Benabou,

2002; Heathcote, Storesletten and Violante, 2017), a household’s net labor income,
yit, is given by

(18) yit = (1− τLt )(wthitnit)
1−τPt ,

where wt is the aggregate real wage rate and τLt and τPt determine the level and
progressivity of the tax code. Given net labor income, the first-order condition
for labor supply is

(19) ∂G(hit, nit)

∂nit
= (1− τPt )(1− τLt )(wthit)

1−τPt n
−τPt
it = (1− τPt )

yit
nit

.

Assuming that G has a constant elasticity w.r.t. n, ∂G(hit,nit)
∂nit

= (1 + γ)G(hit,nit)
nit

with γ > 0, we can simplify the expression for the composite consumption good,
xit, making use of this first-order condition (19), and substitute G(hit, nit) out of
the individual planning problem

(20) xit = cit −G(hit, nit) = cit −
1− τPt
1 + γ

yit .

When the Frisch elasticity of labor supply is constant and the tax schedule has
the form (18), the disutility of labor is always a fraction of labor income and
constant across households. Therefore, in both the household’s budget constraint
and felicity function, only after-tax income enters and neither hours worked nor
productivity appear separately.

Aggregate effective labor supply depends on the distribution of hit and tax pro-
gressivity. Without loss of generality, we assume G(hit, nit) = h1−τ̄P

it
n1+γ
it
1+γ , where

τ̄P is the stationary equilibrium level of progressivity of the tax code. This func-
tional form simplifies the household problem as hit drops out from the first-order

11 The assumption of GHH preferences is mainly motivated by the fact that many estimated DSGE
models of business cycles find small aggregate wealth effects in the labor supply; see, e.g., Schmitt-Grohé
and Uribe (2012); Born and Pfeifer (2014). In Appendix B.1, we show how the assumption of King,
Plosser and Rebelo (1988) (KPR) preferences affects results. We also briefly discuss them in Section
IV.C.
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condition as long as tax progressivity is constant. Then, all households supply
the same number of hours nit = N(wt). Total effective labor input,

∫
nithitdi,

is then hence also equal to N(wt) because we normalize
∫
hitdi = 1. Individual

after tax labor income is then

(21) yit = (1−τLt )(wthitnit)
1−τ̄P = (1−τLt )

1+γ

γ+τ̄P (1−τ̄P )
1−τ̄P

γ+τ̄P w
1+γ

γ+τ̄P
(1−τ̄P )

t h1−τ̄P

it .

In an extension, we allow for tax progressivity to vary over time because it can
directly affect the distribution of net incomes and thereby wealth.12

Baseline: heterogeneous households and incomplete markets

In our baseline, the household sector is subdivided into two types of agents:
workers and entrepreneurs. The transition between both types is stochastic.
On top, workers face idiosyncratic labor productivity risk. Both, workers and
entrepreneurs, rent out physical capital, but only workers supply labor. En-
trepreneurs do not work, but earn all pure rents in our economy except for the
rents of unions which are equally distributed across workers. All households self-
insure against the income risks they face by saving in a liquid nominal asset
(bonds) and a less liquid asset (capital). Trading these illiquid assets is subject
to random participation in the capital market.

We assume that productivity evolves according to a log-AR(1) process and a
fixed probability of transition between the worker and the entrepreneur state:

12In this case, the parameter τPt governing the progressivity of the tax schedule evolves according to

(33a) τPt
τ̄P

=

(
τPt−1

τ̄P

)ρP

ϵPt ,

where ϵPt are shocks to tax progressivity. When tax progressivity does not coincide with its stationary
equilibrium value, individual hours worked differ across agents and are given by

(19a) nit =
[
(1− τPt )(1− τLt )

] 1

γ+τP
t h

τ̄P −τP
t

γ+τP
t

it w

1−τP
t

γ+τP
t

t ,

such that aggregate effective hours are given by

(19b) Nt =

∫
nithit =

[
(1− τPt )(1− τLt )

] 1

γ+τP
t w

1−τP
t

γ+τP
t

t

∫
h

γ+τ̄P

γ+τP
t

it︸ ︷︷ ︸
:=Ht

.

Here Ht measures how the tax progressivity influences the (hours-weighted) average labor productiv-
ity. Scaling of the disutility of labor by h1−τ̄P

it is thus a normalization of Ht to one in the stationary
equilibrium. Household after-tax labor income, plugging in the optimal supply of hours, is then

(22) yit = (1− τLt )(wthitnit)
1−τP

t = (1− τLt )

1+γ

γ+τP
t (1− τPt )

1−τP
t

γ+τP
t w

1+γ

γ+τP
t

(1−τP
t )

t h

γ+τ̄P

γ+τP
t

(1−τP
t )

it .
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h̃it =


exp

(
ρh log h̃it−1 + ϵhit

)
with probability 1− ζ if hit−1 ̸= 0,

1 with probability ι if hit−1 = 0,

0 else,
(23)

with individual productivity hit = h̃it∫
h̃itdi

such that h̃it is scaled by its cross-
sectional average,

∫
h̃itdi, to make sure that average worker productivity is con-

stant. The shocks ϵhit to productivity are normally distributed with variance σ̄2
h.13

With probability ζ households become entrepreneurs (h = 0). With probability
ι an entrepreneur returns to the labor force with median productivity. Besides
their labor income, workers receive a share in union rents, ΠU

t , which are dis-
tributed lump sum, leading to labor-income compression. For tractability, we
assume union profits to be taxed at a fixed rate independent of the recipient’s
labor income.

For the distribution of firm profits (aside union profits), we assume that they
primarily go to entrepreneurs. However, entrepreneurs as a group can sell claims
to a fraction ωΠ of their profits as shares. These claims have stochastic maturity
and are liquid. This stochastic maturity ensure finite prices for profit claims even
at zero interest rates of liquid assets. Each period ιΠ claims mature. When a claim
matures, it loses value and is replaced by a new issuance by the entrepreneurs.
We assume a unit mass of profit shares which then trade at price qΠt . The en-
trepreneurs then receive in each period the sum of the profits they have not sold
plus the value of the new shares they sell: ΠE

t = (1− ωΠ)ΠF
t + ιΠqΠt .14

This modeling strategy allows us to match the income and wealth distribu-
tion following the idea by Castaneda, Diaz-Gimenez and Rios-Rull (1998) while
limiting the impact of profits on investment behavior and asset markets.

Given incomes, households optimize intertemporally subject to their budget

13In our baseline, we treat the variance as time fixed. We consider an extension where income risk
follows a log-AR(1) process with endogenous feedback to aggregate output growth:

σ2
h,t = σ̄2

h exp ŝt,

ŝt+1 = ρsŝt +ΣY
Yt+1

Yt
+ ϵσt ,

(23a)

i.e., at time t households observe a change in the variance of shocks that drive the next period’s produc-
tivity.

14Boar and Midrigan (2019) use a similar structure, where entrepreneurs retain a fraction of firm
profits and thus the size of markups has an impact on inequality in the economy.
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constraint

cit + bit+1 + qtkit+1 = bit
Rit
πt

+ (qt + rt)kit + yit(24)

+ Ihit ̸=0(1− τt)Π
U
t + Ihit=0(1− τLt )(Π

E
t )

1−τ̄P ,

kit+1 ≥ 0, bit+1 ≥ B ,

where ΠU
t is union profits taxed at the average tax rate τt, ΠE

t is profit payouts
to entrepreneurs, bit is real liquid assets, kit is the amount of illiquid assets, qt is
the price of these assets, rt is their dividend, πt = Pt

Pt−1
is realized inflation, and

Rit is the nominal interest rate on liquid assets, which depends on whether the
household is a borrower or lender, the efficiency of intermediation, the returns
on profit shares, and the central bank’s interest rate Rb

t , which is set one period
before. All households that do not participate in the capital market (kit+1 = kit)
still obtain dividends and can adjust their liquid asset holdings. Depreciated
capital has to be replaced for maintenance, such that the dividend, rt, is the net
return on capital. Holdings of bonds have to be above an exogenous debt limit
B, and holdings of capital have to be non-negative.

Substituting the expression cit = xit +
1−τ̄P

1+γ yit for consumption, we obtain the
budget constraint for the composite leisure-consumption good,

xit + bit+1 + qtkit+1 = bit
Rit
πt

+ (qt + rt)kit +
τ̄P+γ
1+γ yit(25)

+ Ihit ̸=0(1− τt)Π
U
t + Ihit=0(1− τLt )(Π

E
t )

1−τ̄P ,

kit+1 ≥ 0, bit+1 ≥ B .

Households make their savings and portfolio choice between liquid bonds and
illiquid capital in light of a capital market friction that renders capital illiquid
because participation in the capital market is random and i.i.d. in the sense that
only a fraction, λ, of households are selected to be able to adjust their capital
holdings in a given period.

Ex-post returns Rit on the liquid asset are given by the average return of the
liquid asset portfolio, composed of government bonds Bt and profit shares with a
value of qΠt , i.e.,

(26) Rit =

At
Rb

tBt+πt[(1−ιΠ)qΠt +ωΠΠF
t ]

Bt+qΠt−1
if bit ≥ 0

At
Rb

tBt+πt[(1−ιΠ)qΠt +ωΠΠF
t ]

Bt+qΠt−1
+R if bit < 0

.

The shifter At reflects a “risk-premium shock” (as in, for example, Smets and
Wouters, 2007) and is technically modeled as an intermediation efficiency here.
The first part of the sum in the numerator is the interest payments on government
bonds issued and bought in the previous period, the second part is the returns
from selling the non-matured profit claims and the share of profits that is paid
out to shareholders. The denominator is the sum of the value of bonds and profit
shares bought in the previous period.
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Since a household’s saving decision—(b′a, k
′) for the case of adjustment and

(b′n, k) for non-adjustment—will be some non-linear function of that household’s
wealth and productivity, inflation and all other prices will be functions of the
joint distribution, Θt, of (b, k, h) in t. This makes Θ a state variable of the
household’s planning problem and this distribution evolves as a result of the
economy’s reaction to aggregate shocks. For simplicity, we summarize all effects
of aggregate state variables, including the distribution of wealth and income, by
writing the dynamic planning problem with time-dependent continuation values.

This leaves us with three functions that characterize the household’s problem:
value function V a for the case where the household adjusts its capital holdings, the
function V n for the case in which it does not adjust, and the expected continuation
value, W, over both,

V a
t (b, k, h) =max

b′a,k
′
u[x(b, b′a, k, k

′, h)] + βEtWt+1(b
′
a, k

′, h′) ,

V n
t (b, k, h) =max

b′n
u[x(b, b′n, k, k, h)] + βEtWt+1(b

′
n, k, h

′) ,(27)

Wt+1(b
′, k′, h′) =λV a

t+1(b
′, k′, h′) + (1− λ)V n

t+1(b
′, k′, h′) .

Expectations about the continuation value are taken with respect to all stochas-
tic processes conditional on the current states. Maximization is subject to the
corresponding budget constraint. The distribution Θt then evolves according to

Θt+1(b
′, k′, h′) = λ

∫
b′=b∗a,t(b,k,h),k

′=k∗t (b,k,h)
Φ(h, h′)dΘt(b, k, h)(28)

+ (1− λ)

∫
b′=b∗n,t(b,k,h),k

′=k
Φ(h, h′)dΘt(b, k, h) ,

where Φ(·) is the transition probability for h and b∗a/n,t and k∗t are the time-t
optimal policies.

Importantly, following Reiter (2009), one can view the discretized version of
(27) and (28) as a set of equations that pins down the dynamics of the value
functions and optimal policy for each b× k × h node as well as the transition of
the mass of households at each of the nodes.

Model variant with a representative household and complete markets

With complete markets, when all households are homogeneous with equal and
constant labor productivity hi = 1 and equally obtain all profit incomes, the plan-
ning problem is described by the consumption Euler equation for bonds instead
of the above mentioned set of equations. For an optimal consumption-savings
policy,
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uc(xt) = βEt
AtR

b
t

πt+1
uc(xt+1)(29)

needs to hold, replacing (27). Again, xt = ct−G(nt) is the composite consumption-
leisure good.

The law of motion for the distribution (28) is replaced by the wealth accumu-
lation equation given by the budget constraint

qtKt+1 +Bt+1 =
Rb

t
πt
Bt + (qt + rt)Kt(30)

+ (1− τt)
[
τPt +γ
1+γ (wtNt)

(1−τPt ) +ΠU
t +ΠF

t

]
− xt ,

and the consumption Euler equation for capital

(31) uc(xt) = βEt
qt+1 + rt+1

qt
uc(xt+1),

which then yields the optimal portfolio combination of K and B given return
expectations.

C. Government

This leaves us with the government sector. The government operates a mone-
tary and a fiscal authority. The monetary authority controls the nominal interest
rate on liquid assets, while the fiscal authority issues government bonds to fi-
nance deficits, chooses both the average tax rate in the economy and the tax
progressivity, and makes expenditures.

We assume that monetary policy sets the nominal interest rate following a
Taylor-type (1993) rule with interest rate smoothing:

(32)
Rb

t+1

R̄b
=

(
Rb

t

R̄b

)ρR (πt
π̄

)(1−ρR)θπ
(

Yt
Yt−1

)(1−ρR)θY

ϵRt .

The coefficient R̄b ≥ 0 determines the nominal interest rate in the steady state.
The coefficients θπ, θY ≥ 0 govern the extent to which the central bank attempts
to stabilize inflation and output growth, Yt

Yt−1
. The parameter ρR ≥ 0 captures

interest rate smoothing.
Government debt evolves according to the rule (c.f. Woodford, 1995)

Bt+1

Bt
=

(
Bt

B̄

)−γB (πt
π̄

)γπ ( Yt
Yt−1

)γY

Dt , Dt = DρD
t−1ϵ

D
t ,(33)

where Dt is a persistent shock to the government’s structural deficit. Besides
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issuing bonds, the government uses tax revenues Tt, defined below, to finance
government consumption, Gt, and interest on debt. The parameters γB, γπ, and
γY measure, respectively, how the deficit reacts to outstanding debt, inflation,
and the output gap.

The average tax rate in the economy is set according to a similar rule

(34) τt
τ̄

=
(τt−1

τ̄

)ρτ ( Bt

Bt−1

)(1−ρτ )γτ
B
(

Yt
Yt−1

)(1−ρτ )γτ
Y

.

The level parameter of the tax code τLt adjusts such that the average tax rate
on income equals this target level, i.e.,

(35) τt =
Et

(
wtnithit + Ihit=0Π

E
t

)
− τLt Et

(
wtnithit + Ihit=0Π

E
t

)τ̄P
Et

(
wtnithit + Ihit=0Π

E
t

) ,

where Et is the expectation operator, which here gives the cross-sectional average.
Total government tax revenues Tt are then Tt = τt

(
wtnithit + Ihit ̸=0Π

U
t + Ihit=0Π

E
t

)
and the government budget constraint determines government spending residu-
ally: Gt = Bt+1 + Tt −Rb

t/πtBt.
There are thus two shocks to government rules: monetary policy shocks, ϵRt ,

and structural deficit shocks, ϵDt . We assume these shocks to be log normally
distributed with mean zero.

D. Goods, asset, and labor market clearing

The labor market clears at the competitive wage given in (4). The liquid asset
market clears whenever the following equation holds:

Bt+1 + qΠt = Bd(At, wt, w
F
t ,Π

E
t ,Π

U
t , qt, rt, q

Π
t , q

Π
t−1, R

b
t , πt, π

W
t , τt,Θt,Wt+1)

:= Et

[
λb∗a,t + (1− λ)b∗n,t

]
,(36)

where b∗a,t, b
∗
n,t are functions of the states (b, k, h), and depend on how households

value asset holdings in the future, Wt+1(b, k, h), and the current set of prices
(and tax rates) (At, wt, w

F
t ,Π

E
t ,Π

U
t , qt, rt, q

Π
t , q

Π
t−1, R

b
t , πt, π

W
t , τt,Θt,Wt+1). Fu-

ture prices do not show up because we can express the value functions such
that they summarize all relevant information on the expected future price paths.
Expectations in the right-hand-side expression are taken w.r.t. the distribution
Θt(b, k, h). Equilibrium requires the total net amount of bonds the household
sector demands, Bd, to equal the supply of government bonds plus the value of
profit shares. In gross terms there are more liquid assets in circulation; some
households borrow up to B.

The value of profit shares is, given the linearized solution, determined by a
no-arbitrage condition between bonds and profit shares. Both need to have the
same expected return:
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(37) qΠt R
b
t = Etπt+1

[
(1− ιΠ)qΠt+1 + ωΠΠF

t+1

]
.

Last, the market for capital has to clear, i.e.,

Kt+1 = Kd(At, wt, w
F
t ,Π

E
t ,Π

U
t , qt, rt, q

Π
t , q

Π
t−1, R

b
t , πt, π

W
t , τt,Θt,Wt+1)

:= Et[λkt
∗ + (1− λ)k] ,(38)

where Kd defines the aggregate supply of funds from households—both those
that trade capital, λk∗t , and those that do not, (1 − λ)k. Again k∗t is a function
of the current prices and continuation values. The goods market then clears due
to Walras’ law, whenever labor, bonds, and capital markets clear.

When we consider the representative household model, we can think of Kd

and Bd as simply given by (30) and (31). In other words, the representative
household model only changes equilibrium conditions in replacing the Bellman
equation and the capital and bonds demand equations, but leaves the entire other
model structure unchanged.

E. Equilibrium

A sequential equilibrium with recursive planning in our model is a sequence of
policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t }, a sequence of value functions {Wt}, a se-
quence of prices {wt, w

F
t ,Π

E
t ,Π

U
t , qt, rt, q

Π
t , R

b
t , πt, π

W
t , τt}, a sequence of stochas-

tic states {At, Zt,Ψt, µ
Y
t , µ

W
t , Dt} and shocks {ϵAt , ϵZt , ϵΨt , ϵ

µY
t , ϵµWt , ϵDt , ϵ

R
t }, ag-

gregate capital and labor supplies {Kt, Nt}, distributions Θt over individual asset
holdings and productivity, and expectations for the distribution of future prices,
such that

1) Given the functionals EtWt+1 for the continuation value and period-t prices,
policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } solve the households’ planning prob-
lem; and given the policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } and prices, the
value functions {Wt} are a solution to the Bellman equation (27).

2) Distributions of wealth and income evolve according to households’ policy
functions.

3) The labor, the final goods, the bond, the capital, and the intermediate goods
markets clear in every period, interest rates on bonds are set according to
the central bank’s Taylor rule, fiscal policies are set according to the fiscal
rules, and stochastic processes evolve according to their law of motion.

4) Expectations are model consistent.
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II. Numerical solution and estimation technique

Solving for the sequential equilibrium of the model is a challenging task, in par-
ticular in an estimation setting. In the following, we develop our new Bayesian
reduction technique starting from well-known principles in solving for state-space
solutions of difference equations. First, we summarize how one can write a
heterogeneous-agent model in form of a system of difference equations, follow-
ing Reiter (2009). Then, we explain how our method achieves the necessary
complexity reduction that renders the solution algorithm fast enough to repeat-
edly obtain a state-space solution within the estimation procedure, even when
the household problem is high dimensional. Third, we propose a metric to assess
the quality of our solution relative to alternatives. Finally, we discuss how the
proposed state-space solution is integrated in a Bayesian estimation.

A. From representative-agent to heterogeneous-agent solution

To understand the solution procedure we propose, it is useful to start by think-
ing about the representative agent twin of our model as in Section I.B. Following
Klein (2000) and Schmitt-Grohé and Uribe (2004), we represent the sequential
equilibrium as the solution of a non-linear difference equation

(39) EtF (X∗
t , X

∗
t+1) = 0,

where X∗
t are combined state and control variables. While the partitioning of X∗

t

into states and controls matters for the solution of (39), it is not central to our
argument. Instead, in moving from the representative-agent to the heterogeneous-
agent model, it is useful to partition the variables in X∗

t in terms of whether they
are household choices or not. This means, we separate out composite consump-
tion, xt, capital demand, Kd

t , and bond demand, Bd
t , and capture by Xt all other

aggregate variables. Both Bd
t and Kd

t are state variables and xt is a control. The
corresponding equilibrium conditions are the consumption Euler equations and
the budget constraint of the household, equations (29) – (31). In equilibrium,
the capital demanded by firms, Kt, and the bonds offered by the government,
Bt, need to align with the household plans, i.e., (36) and (38) need to hold. This
means, we can write the representative household equilibrium as

(40) EtF ({xt,Kd
t , B

d
t }, Xt, {xt+1,K

d
t+1, B

d
t+1}, Xt+1) = 0.

Moving to the heterogeneous agent case we simply replace the household vari-
ables by a large vector of variables and the corresponding optimality and equi-
librium conditions (see Reiter, 2009), discretizing the idiosyncratic state space.
Specifically, the Bellman equation (27) pins down the optimal policy at each node
(b, k, h) and the sequence of continuation values, Wt(b, k, h).15 Similarly, for each

15In practice our algorithm is based on the endogenous grid method of Carroll (2006) and Hintermaier
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node, (28) describes how the mass of households evolves over time. Taken to-
gether, (27) and (28) define a set of equilibrium conditions for the evolution
of continuation values and distribution masses—two conditions for each node
(b, k, h). These “replace” (29), (30), and (31) of the representative agent model.
We summarize these “idiosyncratic variables”, continuation values and masses, by
ft in the following and obtain as the equilibrium condition—with a slight abuse
of notation:

(41) EtF (ft, Xt, ft+1, Xt+1) = 0.

In principle, a first-order approximation of (41) can be solved in the usual way:
Calculating the Jacobian of F and, e.g., running a QZ-decomposition as proposed
by Klein (2000).

B. Reducing complexity

In practice, however, the direct attack to linearizing and solving (41) becomes
infeasible, given the size of the system in our application. This is due to the high
number of nodes of the liquid/illiquid asset-income grid (100× 100× 22). Reiter
(2009), Bayer and Luetticke (2020), and Ahn et al. (2018) suggest methods that
tackle the issue based on reducing the number of state and control variables. The
three approaches do so, respectively, before solving for the stationary equilibrium,
after solving for this equilibrium but before knowledge of the dynamics, or after
linearizing the system of differential equations. These approaches render a single
solution of the economic model at a good quality of approximation numerically
feasible. For estimation, we develop a novel Bayesian reduction technique for
HANK models that is more aggressive and also better informed. Below we provide
an overview, further technical details can be found in Appendix C.

Using the partitioning of variables and parameters to simplify the
linearization

The first improvement is based on the observation that the dimensionality of
the heterogeneous-agent part, ft, is much larger than that of the aggregate part,
Xt. Keeping this partitioning, we write the linearized version of the difference
equation (41) as

(42)
[
Bff BfX

BXf BXX

]
︸ ︷︷ ︸

=B

[
ft
Xt

]
= −Et

[
Aff AfX

AXf AXX

]
︸ ︷︷ ︸

=A

[
ft+1

Xt+1

]
,

where we ordered, in line with the ordering of variables, the set of “idiosyncratic”
equations—(27) and (28)—first and all other equations last.

and Koeniger (2010) and thus works with marginal value functions instead of value functions.
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This partitioning is useful not only conceptually but also very practically. The
idiosyncratic equations contain only a small subset of the parameters of the model.
In other words, Aff , Bff , AfX , and BfX only depend on this small subset. What
is more, AXf and BXf can be made parameter-free if we introduce the aggregate
capital/bond holdings of households as auxiliary variables such that the distri-
bution no longer enters the aggregate model block directly. Therefore, we only
need to update BXX and AXX when changing parameters during the estimation
that do not directly appear in the household problem. For example, changing the
fiscal-policy or Taylor-rule coefficients, or nominal rigidities only affects BXX and
AXX . This means that the number of derivatives to be calculated in the second
step, i.e., when estimating the business cycle model with heterogeneous agents,
is the same as the number of derivatives to be updated during the estimation of
its representative agent “twin”.

Importantly, those parameters directly affecting the other “idiosyncratic” blocks
also affect the stationary equilibrium. This means they can be identified (cali-
brated) in an incomplete markets model using time-series averages of aggregate
and cross-sectional data, approaching the estimation effectively in two steps. In
our case these include: the discount factor, the liquidity of assets, borrowing
constraints, and the average income risk.

Dimensionality reduction prior to knowledge of the dynamics of the
economy

Naturally the partitioning itself does not solve the problem of A and B being
very large matrices because of the high dimensional idiosyncratic grid. To tackle
this problem, we proceed in two steps. First, we reduce the dimensionality without
knowledge of the dynamics of the economy (where we extend Bayer and Luetticke,
2020). Second, we leverage that, after solving the model once, we can reduce the
model further based on the dynamics of the model.

The first step is to think of ft as parameters of the deviation of value functions
and distributions from their stationary equilibrium counterparts. This view of
ft as parameters of functions immediately implies that the dimensionality of ft
no longer needs to be tightly connected to the size of the asset-income grid. We
construct these difference functions as a mix their representation16 by a multidi-
mensional discrete cosine transform (DCT) and linear interpolations. The multi-
dimensional DCT can be expressed in terms of Chebychev polynomials evaluated
only at the nodal values of the marginal value functions ∂Wt

∂b and ∂Wt
∂k used in

the first-order conditions of the optimization problem (27), where the assumption
is that these nodal values are Chebychev nodes. When perturbing the problem
(27), we perturb the coefficients instead of the function values themselves. To
reduce complexity, we treat those coefficients as fixed (and do not perturb them)

16To reduce the curvature of the marginal value functions, we first transform them by the inverse
marginal utility and then take the logarithm.
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that are numerically small (in absolute value) in the stationary equilibrium or do
not affect the partial derivative of the marginal value functions with respect to
prices. The latter aspect improves on Bayer and Luetticke (2020); see Appendix
C.1. The multidimensional DCT and its inverse can be used to efficiently trans-
form nodal values to coefficients and reverse. We also use the DCT to project the
equilibrium conditions to the space of the perturbed coefficients.

The distribution function Θt, see (28), we represent by marginals, F b
t , F

k
t , F

h
t

and a copula, Ct(·), following Bayer and Luetticke (2020).17 Improving on their
approach, however, we write the copula Ct(F

b
t , F

k
t , F

h
t ) at time t as the sum of

the linear interpolants generated from the steady-state copula C̄(·) and a new
perturbation term, Ĉt(·). This perturbation term is a linear interpolant, too, but
we allow it to have a different and sparser nodal grid, compared to the first term.
The marginal distributions, F b

t , F
k
t , F

h
t , enter directly in ft. More details can be

found in Appendix C.1.

Dimensionality reduction based on knowledge of the economy’s dynamics

This first reduction step allows us to solve the model, but if we want the solu-
tion to be sufficiently precise, the number of variables in the difference equation
remains high and thus the computational time for the QZ-decomposition long.
One way to address this issue is further model reduction. Ahn et al. (2018) give
an overview of model reduction techniques for difference equations. Model reduc-
tion in our case means finding an orthonormal basis P ∈ Rn×m with m << n
such that we can write ft ≈ PYt and replace the system (42) by a system with
factors Yt,

(43)
[
P ′BffP P ′BfX

BXfP BXX

]
︸ ︷︷ ︸

=B′

[
Yt
Xt

]
= −Et

[
P ′AffP P ′AfX

AXfP AXX

]
︸ ︷︷ ︸

=A′

[
Yt+1

Xt+1

]
.

The solution of this reduced model should give us an arbitrarily close approxima-
tion to the solution of the original problem (42).

For a given set of parameters, this can be achieved by solving first the origi-
nal system (42) given a prior parameterization that includes the shock processes.
Based on this solution, we calculate the variance-covariance matrix, Σf , of each
sub-group of elements in f (the value functions and the copula separately) and
perform a Jordan eigenvalue decomposition thereof (and thus obtain their prin-
cipal components). This gives us a factorization of f , where factors associated
with small eigenvalues, λ2f , are approximately constant and thus irrelevant for

17There is a numerical advantage of writing the distribution in the form of a copula and marginals.
The copula reflects cross-terms, which can be expected to be of lesser importance for aggregate dynamics.
The separation then allows us to calibrate separate degrees of precision in line with the differences in
importance.
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the model dynamics and in particular the estimation:

(44) Σf =
[
Q′

1f Q′
2f

] [λ1f 0
0 λ2f

] [
Q1f

Q2f

]
.

This means, we can choose P = Q′
1f as basis for the model reduction. The

reduced model then, by construction, has a tiny approximation error relative to
the full model at the parameterization used to construct P. Furthermore, one
can expect that this basis P remains a reasonably good basis in the vicinity of
the parameters.18 Therefore, our algorithm updates P only infrequently. We
show, for our application, that, even when parameters change but P does not,
the solution of the reduced model is a precise approximation of the full model
solution. In Appendix C.2 and C.3, we argue in more detail, why one can expect
a strong model reduction possibility and why this reduction can be expected to
be stable to parameter variations in the estimation.

In practice, we generate P initially based on the model’s prior mode, and then
update it once during posterior-mode finding and once after finding a tentative
posterior mode of the parameter distributions but before running the Markov-
Chain Monte-Carlo algorithm. In our application, the model reduction leaves
us with 504 state variables and 70 controls. This includes 21 aggregate state
variables and 44 aggregate controls.

C. Assessment of quality

We check the precision of our second model-reduction step by comparing the
likelihood and the impulse response functions (IRF) across model solutions. The
first solution we compare to is the one in (42) without second model-reduction
step. The second solution we compare to is the sequence-space method proposed
by Boppart, Krusell and Mitman (2018) and Auclert et al. (2021).

We suggest to evaluate the distance between two model solutions based on the
IRFs they produce for the data used in estimation. Concretely, we define the
distance between the reference model solution S1 and the alternative solution S2
as

DS1,S2(H,x|ϑ) = 1−
∑

s∈S
∑H

h=1 [IRFS1(x, s, h|ϑ)− IRFS2(x, s, h|ϑ)]2∑
s∈S

∑H
h=1 [IRFS1(x, s, h|ϑ)]2

,(45)

where H is the horizon up to which we evaluate the response of variable x to a one-
standard-deviation shock ϵs, summing over all aggregate shocks, s ∈ S. ϑ is the
parameter vector. The metric is akin to a forecast error variance decomposition:
the distance informs us about the fraction of the forecast error variance for x
under the reference solution S1 that is “explained” by the alternative solution

18Ahn et al. (2018) argue that small variations compared to the ideal minimal basis can be compensated
by retaining a somewhat too high dimensional basis.
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S2. We show in Section III.D below that our solution is practically identical to
both reference solutions.

D. Estimation

As explained, it is useful to group the model parameters ϑ into those that affect
the stationary equilibrium and those that do not when thinking about estimat-
ing the model. The representative agent literature knows this split, too, and
sometimes calibrates parameters like steady-state markups or average govern-
ment expenditure shares (e.g. Smets and Wouters, 2007; Christiano, Eichenbaum
and Evans, 2005). In the heterogeneous-agent setting, the set of parameters that
affect the stationary equilibrium is larger. Thus, more parameters can be cali-
brated. At the same time, parameters that affect the steady state are more costly
to estimate from the time-series properties of data because they require recalcu-
lating the stationary equilibrium. For this reason, we calibrate those parameters
to cross-sectional moments and time-series averages of the data. This means that
in our application, compared to the typical representative-agent estimation that
tries to calibrate as little as possible (e.g., Justiniano, Primiceri and Tambalotti,
2011), we additionally include the discount factor, the risk aversion, the Frisch
elasticity of labor supply, and the capital share in the set of calibrated parame-
ters. Of course, we also calibrate the forcing processes of heterogeneity itself. We
come back to this in more detail in Section III.

Those parameters that do not affect the stationary equilibrium can be esti-
mated from the time-series evolution of the data (cross-sectional and aggregate).
For this estimation, we use an off-the-shelve Bayesian approach as described in
An and Schorfheide (2007) and Fernández-Villaverde (2010). In particular, we
use the Kalman filter to obtain the likelihood from the state-space representation
of the model solution and employ a standard random walk Metropolis-Hastings
(RWMH) algorithm to generate draws from the posterior likelihood after an ex-
tensive mode finding. Smoothed estimates of the states at the posterior mean
of the parameters are obtained via a Kalman smoother of the type described in
Koopman and Durbin (2000) and Durbin and Koopman (2012). One likelihood
evaluation takes ca. 750 ms on a desktop computer (Intel i7-10700K, code written
in Julia), 80% of the time is needed for the model solution, the remainder for the
Kalman filter.19 The full grid for income and wealth has 220,000 nodes and the
model after the first step of dimensionality reduction which is used to calculate P
has 2883 variables. Finding the stationary equilibrium takes roughly 7 minutes,
the first linearized solution that does not yet use the second model reduction takes
less than 15 minutes to compute.

We deliberately choose the most commonly used approach in estimating DSGE

19We do not leverage the fact that the model solution can be obtained without repeating the QZ-
decomposition when changing only the parameters of the forcing processes. When only parameters of
the exogeneous shock processes are estimated, the model solution can, as usual, be obtained in virtually
no time.
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models, but our state-space based solution approach also lends itself directly to
more sophisticated estimation techniques. One particular example is the Sequen-
tial Monte Carlo approach (Herbst and Schorfheide, 2014, 2015) that Acharya
et al. (2021) advocate for the estimation of large heterogeneous-agent business
cycle models.

III. Parameterization, priors, posteriors, and quality

We estimate several variants of the model using the procedure outlined above.
In the following we focus on two main variants and compare them to their repre-
sentative agent twin; details on all other variants can be found in the appendix.
First, we estimate the model on aggregate data alone and allow only for standard
aggregate shocks (HANK). Second, we include in the estimation distributional
time-series data and allow for shocks to income risk and tax progressivity, for
which we also add observables (HANK-X).20

A. Calibrated parameters

We fix some parameters that affect the stationary equilibrium targeting aver-
age data ratios; see Table 1 (all at the quarterly frequency of the model).21 In
addition, we directly take some parameter estimates from the literature. In par-
ticular, we take the idiosyncratic income process from Storesletten, Telmer and
Yaron (2004), which gives us ρh = 0.98 and σ̄h = 0.12. Guvenen, Kaplan and
Song (2014) provide the probability that a household will fall out of the top 1
percent of the income distribution in a given year, which we take as the transition
probability from entrepreneur to worker, ι = 6.25%. We set the relative risk aver-
sion, ξ, to 4, which is common in the incomplete markets literature; see Kaplan
and Violante (2014).22 We set the Frisch elasticity to 0.5; see Chetty et al. (2011).
The steady-state price and wage markups are both fixed to 10%, following Born
and Pfeifer (2014).

All other calibrated parameters are closely tied to time-series averages of data
moments. While they are calibrated jointly, we present them as if they are only
informed by the statistic that is most informative for a given parameter: The
transition probability to become an entrepreneur, ζ = 0.0002, pins down the per
capita profits of entrepreneurs and therefore the top 10 share in wealth. The
discount factor, β = 0.983, and the liquidity of assets, λ = 0.062, pin down the
capital to output ratio and the share of liquid assets in household portfolios. The
borrowing penalty R̄ = 2.06% determines how many households are indebted.
The difference between total liquidity and government bonds pins down the value
of profit shares relative to output, q̄Π/Y = 1.14, which determines the ratio of

20See Footnotes 12 and 13 for the adjustments to the baseline model.
21Appendix A.2 provides the table of steady-state parameters for the recalibrated representative agent

analogue of our model.
22We also estimate our model with a relative risk aversion of 2; see Section IV.C and Appendix B.
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Table 1—Calibration (quarterly frequency)

Par. Value Description Target Data Source

Households: Income process
ρh 0.980 Persistence labor income Storesletten, Telmer and Yaron (2004)
σh 0.120 Std. labor income Storesletten, Telmer and Yaron (2004)
ι 0.063 Trans. prob. E. to W. Guvenen, Kaplan and Song (2014)
ζ 2.0E-5 Trans. prob. W. to E. Top 10 wealth share: 67% WID 1954-2019
Households: Financial frictions
λ 0.062 Portfolio adj. prob. Liquid to illiquid, B+q̄Π

K
= 0.25 SCF 1950-2016*

R̄ 0.021 Borrowing penalty Share of borrowers: 16% SCF 1983-2016**
q̄Π/Y 1.140 Value of profit shares Gov. debt to output, B

Y
= 1.67 NIPA 1954-2019

Households: Preferences
β 0.983 Discount factor Capital to output, K

Y
= 11.22 NIPA 1954-2019

ξ 4.000 Relative risk aversion Kaplan and Violante (2014)
γ 2.000 Inverse of Frisch elasticity Chetty et al. (2011)
Firms
α 0.680 Share of labor Average labor income share Standard value
δ0 0.018 Depreciation rate Bayer, Born and Luetticke (2023)
η̄ 11.000 Elasticity of substitution Born and Pfeifer (2014)
ζ̄ 11.000 Elasticity of substitution Born and Pfeifer (2014)
Government
τ̄L 0.180 Tax rate level Gov. consumption, G

Y
= 0.2 NIPA 1954-2019

τ̄P 0.102 Tax progressivity Average progressivity SOI 1954-2019
R̄b 1.000 Gross nominal rate Growth ≈ interest rate
π̄ 1.000 Gross inflation Indexation, w.l.o.g.

Note: Calibration targets are the sample averages when a data source is given. Otherwise the parameter
is fixed to the value in the cited literature. BLS: Bureau of Labor Statistics. NIPA: National Income and
Product Accounts. SCF: Survey of Consumer Finances, shares are taken from *Kuhn, Schularick and
Steins (2020) and **Bayer et al. (2019). SOI: Statistics of Income. WID: World Inequality Database.
Details on the data can be found in Appendix A.

ωΠ and ιΠ as ωΠ/ιΠ = ηq̄Π/Y through the steady-state version of (37). We set
steady-state inflation to zero as we have assumed indexation to the steady-state
inflation rate in the Phillips curves. We set the steady-state net interest rate on
bonds also to zero, in order to broadly capture the average federal funds rate in
real terms minus output growth over 1954 – 2019.

The share of labor in production, α = 0.68, is pinned down by the average labor
income share (given η). The average quarterly depreciation, δ0 = 0.0175, can be
read off the average depreciation rates on US capital (including buildings). We set
the average taxation level, τ̄L = 0.18, such that the budget balances for the ob-
served level of government consumption. Finally, we follow Ferriere and Navarro
(2023) in constructing a direct estimate for tax progressivity, extending their esti-
mates until 2017; see Appendix A.1.2. This approach uses the assumed non-linear
tax schedule to measure progressivity and is based on Mertens and Montiel Olea
(2018)’s estimates of average marginal tax rates. Heathcote, Storesletten and
Violante (2017) show that this functional form approximates the progressivity of
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the US tax system well. The tax progressivity exponent, τ̄P = 0.1022, matches
the time-series average of this statistic.

B. Time-series data used for estimation

For the estimation, we use quarterly US data from 1954Q3 to 2019Q4 and
include the following seven observable time series: the growth rates of per capita
GDP, private consumption, investment, and wages, all in real terms; the logarithm
of the level of per capita hours worked; the log difference of the GDP deflator; and
the (shadow) federal funds rate. Our model is stationary so all growth rates are
demeaned; see Appendix A.1.2 for a formal depiction of the vector of observables.
These data are standard in the estimation of DSGE models.

In the HANK-X extension, we add more data with shorter and/or non-quarterly
availability: First, cross-sectional information on wealth and income shares of the
top 10 percent. These are available at an annual frequency from 1954 to 2019
from the World Inequality Database.23 The reason we focus on the top 10 wealth
and income shares is that these measures are most similar across alternative, but
less frequently available, data sources such as the Survey of Consumer Finances
(SCF); see Kopczuk (2015). Second, we use the time series of the tax progres-
sivity estimates that we construct in Appendix A.1.2. Third, we add income
risk estimates, available at a quarterly frequency from 1983Q1 to 2013Q1, from
Bayer et al. (2019) based on panel data in the Survey of Income and Program
Participation (SIPP). In this extended estimation we also allow for shocks to pro-
gressivity and income risk, which directly affect the distribution of income. We
allow for measurement error on the cross-sectional data (the top 10 shares) to
avoid stochastic singularity. For simplicity, we treat the measurement error on
the top 10 shares as classical (normal and i.i.d.) despite the fact that the shares
are non-linear functions of the sampled micro data. In other words, we assume
that measurement errors reflect more than just sampling uncertainty.

C. Priors and posteriors

Columns 1-4 of Table 2 present the parameters we estimate, their assumed prior
distributions and their posteriors. The priors and posteriors for the distributions
of the shock processes are listed in Appendix A.3. Where available, we use prior
values that are standard in the literature and independent of the underlying data.

Priors

Following Justiniano, Primiceri and Tambalotti (2011), we impose a gamma
distribution with prior mean of 5.0 and standard deviation of 2.0 for δ2/δ1, the
elasticity of marginal depreciation with respect to capacity utilization, and a

23This database draws on work by Piketty, Saez, and Zucman; see, e.g., Piketty and Saez (2003) or
Saez and Zucman (2016).
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gamma prior with mean 4.0 and standard deviation of 2.0 for the parameter
controlling investment adjustment costs, ϕ. For the slopes of price and wage
Phillips curves, κY and κw, we assume gamma priors with mean 0.10 and standard
deviation 0.03. This corresponds to price and wage contracts having an average
length of four quarters at the prior mode. Regarding the profit-shares parameters
ιΠ and ωΠ, we assume that ιΠ follows a shifted beta distribution with mean 0.5
and standard deviation 0.25. We set the extrema of the shifted distribution such
that the expected duration of the profit shares, 1

ιΠ
, is at least ten years and at

most 200 years. The duration at the prior mode is 20 years. The value for ωΠ

then follows from keeping the stationary equilibrium value of q̄Π constant.
For monetary policy, we estimate feedback parameters in the Taylor rule for

inflation and output growth, θπ and θY . We impose normal distributions with
prior means of 1.7 and 0.13, respectively. In addition, we allow for interest rate
smoothing with parameter ρR. Here we assume a beta distribution with param-
eters (0.5, 0.2).

In the bond rule, the debt-feedback parameter γB is assumed to follow a gamma
distribution with mean 0.10 and standard deviation 0.08. This centers the prior
for the autocorrelation of debt around 0.9 and implies a half-life of between one
and eight years for a deviation in debt. The parameters governing the feedback
to inflation and output growth, γπ and γY , follow standard normal distributions.
Similarly, the autoregressive parameters, in the tax rules, ρP and ρτ , are assumed
to follow beta distributions (with mean 0.5 and standard deviation 0.2). The
feedback parameters for average tax rates, γτY and γτB, follow standard normal
distributions.

Following Smets and Wouters (2007), the autoregressive parameters of the shock
processes are assumed to follow a beta distribution with mean 0.5 and standard
deviation 0.2. The standard deviations of the shocks follow inverse-gamma distri-
butions with prior mean 0.1% and standard deviation 2%.24 In our baseline we
do not include measurement errors, but allow for these when including estimates
of top income and wealth shares as additional data.

Posteriors

In Table 2, columns 5-7 report the posterior distributions across the three main
estimation variants: RANK, HANK, and HANK-X. Here, we focus on the fric-
tions and policy parameters. The estimated parameters of the exogenous driving
processes can be found in Appendix A.3. Checks on the convergence of the esti-
mator are provided in Appendix A.8.25 The parameter estimates for HANK and
HANK-X are typically close to the RANK estimates with few notable differences.

24In the HANK-X extension, we use a higher prior mean for income risk shocks, s, given the evidence
in Bayer et al. (2019).

25We estimate each model using a single RWMH chain after an extensive mode search. After a long
burn-in, 400,000 draws from the posterior are used to compute the posterior statistics. The acceptance
rates across chains are between 20% and 30%. Appendix A.8 provides Geweke (1992) convergence
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Table 2—Prior and posterior distributions of estimated parameters

Prior Posterior
Parameter Distribution Mean Std. Dev. RANK HANK HANK-X

Frictions

δs Gamma 5.00 2.00 0.697 1.062 0.706
(0.405, 1.058) (0.816, 1.327) (0.532, 0.900)

ϕ Gamma 4.00 2.00 7.875 3.790 1.958
(5.989, 10.033) (3.104, 4.555) (1.826, 2.090)

κ Gamma 0.10 0.03 0.119 0.168 0.140
(0.088, 0.155) (0.129, 0.211) (0.108, 0.177)

κw Gamma 0.10 0.03 0.282 0.280 0.238
(0.206, 0.364) (0.216, 0.348) (0.178, 0.303)

ιΠ Beta 0.50 0.25 — 0.312 0.660
(—, —) (0.049, 0.709) (0.318, 0.928)

Monetary policy

ρR Beta 0.50 0.20 0.794 0.787 0.807
(0.768, 0.818) (0.761, 0.812) (0.783, 0.831)

σR Inv.-Gamma 0.10 2.00 0.238 0.233 0.229
(0.218, 0.258) (0.214, 0.253) (0.210, 0.249)

θπ Normal 1.70 0.30 2.162 1.947 2.066
(1.979, 2.361) (1.742, 2.164) (1.841, 2.311)

θY Normal 0.13 0.05 0.254 0.202 0.218
(0.184, 0.323) (0.135, 0.270) (0.149, 0.287)

Fiscal policy: deficit

ρD Beta 0.50 0.20 0.960 0.958 0.965
(0.927, 0.983) (0.921, 0.989) (0.933, 0.991)

γB Gamma 0.10 0.08 0.089 0.042 0.013
(0.039, 0.140) (0.009, 0.081) (0.002, 0.034)

γπ Normal 0.00 1.00 -2.756 -2.898 -2.159
(-3.164, -2.373) (-3.26, -2.569) (-2.364, -1.973)

γY Normal 0.00 1.00 -0.734 -0.794 -0.43
(-0.898, -0.574) (-0.888, -0.702) (-0.489, -0.376)

Fiscal policy: taxes

ρτ Beta 0.50 0.20 0.492 0.411 0.496
(0.368, 0.603) (0.245, 0.559) (0.395, 0.595)

γτB Normal 0.00 1.00 3.442 2.796 3.289
(2.350, 4.608) (1.820, 3.885) (3.250, 3.332)

γτY Normal 0.00 1.00 -1.621 1.483 -0.921
(-3.004, -0.231) (1.013, 1.900) (-0.944, -0.90)

Income risk

ρs Beta 0.70 0.20 — — 0.518
(—, —) (—, —) (0.445, 0.583)

ΣY Normal 0.00 100.00 — — 28.878
(—, —) (—, —) (28.862, 28.894)

Log marginal data density (only aggregate data) 6590 6588
Log marginal data density (with cross-sectional data) 6627

Note: The table displays the estimated parameters, their priors and posterior means across three model
variants: HANK, HANK-X, and RANK. The parameters of the shock processes are shown in Appendix
A.3. The 90% credible intervals are shown in parentheses. Posteriors are obtained by an MCMC method.
The standard deviations have been multiplied by 100 for better readability. *: The parameter actually
estimated and displayed is 800ιΠ−1

19
to ensure an expected duration of the profit shares between 10 and

200 years.
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In particular, the estimated investment friction and the price rigidities in RANK
are a bit larger. For the investment adjustment costs, this reflects, in part, that
the portfolio adjustment costs at the household level already generate inertia in
aggregate investment. Our estimates of the wage- and price-setting frictions imply
that wages adjust roughly every two to three quarters in all models and prices
adjust every third quarter in HANK and every fourth quarter in RANK.

The estimated policy rules are even more similar across models. There is sub-
stantial interest rate inertia. All variants estimate a coefficient of 0.8 for interest
smoothing. The Taylor rule coefficient on inflation is between 2.0 and 2.2; the
one on output growth is between 0.2 and 0.3. The fiscal rule that governs deficits
and hence government spending exhibits a countercyclical response to inflation
with elasticities between, −2.9 and −2.2. The elasticities with respect to output
growth are between −0.8 and −0.4. Deficits feature a high degree of persistence
as well. The tax rule that governs average taxation has much less inertia. This
implies, given the transitory nature of output growth variations, that tax rates
respond mostly to the level of government debt. More debt implies higher taxes.

When we estimate the income risk process in HANK-X, we find income risks
to be procyclical in the sense that they go up when other shocks drive up output
growth. Given the size of shocks that we estimate, the feedback is small. A one
percent output growth increase, leads to a 0.55 percent higher income risk; a one
standard deviation shock to income risk leads to a 70 percent higher level of risk.

The posterior for ιΠ implies a duration of profit shares of 27 years on average in
the HANK specification and 14 years in HANK-X. Using the top 10 income data,
leads to a lower duration and therefore higher payout share ωΠ (11% vs 21%). The
higher payout share implies a smoother income inequality series, but amplifies the
volatility of aggregate consumption. Adding the cross-sectional data substantially
increases the precision of the estimate, i.e., shrinks the credible intervals.

Table 2 also reports the marginal data densities for the three model estimates.
RANK and HANK frameworks fit the aggregate data equally well. What is more,
the HANK models predict certain correlations of cross-sectional and aggregate
data that RANK, by construction, cannot.26

D. Quality of the model reduction

We assess the quality of our model reduction based on the estimated posterior
distribution. First, we evaluate the quality of the second-stage of the model re-
duction. For this purpose, we draw 1000 parameter vectors from the posterior
distribution and, for each parameter draw, we solve the model once with, and
once without, the second stage reduction. The second-stage reduction matrix P
is kept constant throughout the experiments. This gives us a sampled distribu-
tion of distances between the two model solutions based on the impulse response

statistics as well as traceplots of individual parameters.
26We use this cross-sectional data in the estimation of HANK-X, which also means we cannot directly

compare its marginal data density with the two other estimates.
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functions (IRF). We find that the distance between the two solutions is basically
zero. Table 3 reports the 1st percentile of the sampled quality measure (i.e., the
largest distance). Note that the first-stage reduction is, by construction, invariant
to the estimated parameters. This means that, at least in the vicinity of the es-
timated parameters, there is virtually no loss from using the second-stage model
reduction even when P is not re-optimized.

Still, one might be concerned that the necessary first-stage reduction introduces
approximation errors. To assess this, we evaluate the solution under our method
against a sequence-space Jacobian solution. Auclert et al. (2021) argue that the
approximation quality of such method is very good if the horizon is chosen suffi-
ciently long. Also here, we find that the distance between the solution techniques
in terms of IRFs is extremely small. Given that we have shown the invariance of
the model reduction in our first experiment, we only calculate the distance at the
posterior mean.

Table 3—IRF variation captured by state-space solution with second-stage model reduction

relative to no second stage relative to sequence space

Observable HANK HANK-X HANK HANK-X

Output growth 100.00 100.00 100.00 100.00
Investment growth 100.00 100.00 100.00 100.00
Consumption growth 100.00 100.00 99.95 99.96
Hours worked 100.00 100.00 99.99 99.98
Wage growth 100.00 100.00 100.00 100.00
Policy rate 100.00 100.00 99.98 99.98
Inflation 100.00 100.00 99.98 99.99

Top 10 wealth share – 100.00 – 99.82
Top 10 income share – 100.00 – 99.98
Tax progressivity – 100.00 – 100.00
Income risk – 100.00 – 100.00

Note: The table displays (in percent) variation of IRFs based on a baseline solution that is captured by
our state-space solution with second-stage model reduction. This statistic measures the distance between
impulse responses generated by solving the model with different solution techniques and is based on (45).
Columns 2 and 3 compare the solution with and without second-stage model reduction, columns 4 and 5
our solution technique to a sequence-space Jacobian solution. Columns 2 and 3 refer to the 1st percentile
obtained by drawing 1000 parameter vectors from the posterior distribution. Columns 4 and 5 refer to
the posterior mean. All columns report the minimum (i.e., largest distance) over the first 32 quarters. A
value of exactly 100 means that impulse responses are identical.

Concretely, we calculate for both sets of experiments our metric for all ob-
servable variables used in the estimation. The metric is calculated based on all
shocks using their estimated variances. Columns 2 and 4 show the statistics
for the HANK specification, columns 3 and 5 for HANK-X. Here, we report the
largest distance over the first 32 quarters. The distances are, as mentioned before,
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minimal.27 In Appendix C.4, we also compare graphically the IRFs conditional
on a specific shock between sequence-space and state-space solution. All IRFs are
extremely close across both techniques also beyond the business cycle horizon.

IV. US business cycles and inequality

We apply our estimated model to study the shocks that drive the US business
cycle and to understand what these shocks and their propagation imply for the
dynamics of inequality. We do so in terms of variance decompositions at busi-
ness cycle frequency (between 6 and 32 quarters, based on the frequency domain
decompositions in Uhlig, 2001) and in terms of historical decompositions.28

A. Variance decompositions

Figure 1 shows the variance decompositions for output and consumption growth
(top panels) for the representative agent model (RANK) as well as for the two
hetereogeneous agent model estimates (HANK and HANK-X). Further variance
decompositions of observables and the credible intervals can be found in Appen-
dices A.4 and A.5. Despite the very similar parameter estimates across models,
there are some notable differences in the importance of shocks for the business
cycle, but also many similarities. In all models, technology shocks are the most
important drivers of output. This is in line with what other authors have found
for the RANK model (Smets and Wouters, 2007; Justiniano, Primiceri and Tam-
balotti, 2010, 2011).

In the HANK model, investment-specific technology shocks are even more im-
portant than in RANK because these shocks have a stronger impact on consump-
tion. Positive investment-specific technology shocks move asset prices down and
expected wage incomes up; see the impulse response functions in Appendix A.7.
This drives consumption up because wage-earners have a larger (intertemporal)
marginal propensity to consume than capital holders. More specifically, within
our two-asset framework, there is a sizable share of households with little illiquid
assets but sufficient liquidity such that they can increase their consumption on
impact in the expectations of higher future wages. By contrast, illiquid-asset-
rich households expect lower asset income in the future but they smooth this
change over a longer period. As a result, consumption goes up on impact. In
RANK, this difference of intertemporal MPCs between wage and capital-income
earners is absent, and consumption and investment negatively comove on impact

27We calculate the sequence-space solution based on a 300 period transition as in Auclert et al. (2021).
We use the IRFs from the state-space solution to obtain the endpoint of that transition in order to
eliminate the effect of not being exactly at the stationary equilibrium after 300 periods. We do so
because after some of the shocks, the economy has even after 300 periods not fully returned to the
stationary equilibrium. This also shows an advantage of the state-space solution over a sequence-space
approach, namely that it can easily deal with highly persistent shocks because there is no need to set a
truncation period.

28Appendix A.7 provides impulse response functions for all shocks and observables.
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for the estimated RANK, HANK, and HANK-X models.

Figure 1. Variance decompositions: Output growth, consumption growth, and inequality

after an investment-specific technology shock. For this reason, investment specific
technology shocks add little to consumption movements in RANK.

Comparing the variance decompositions of the HANK and HANK-X estimates,
we see that the inclusion of inequality data, tax-progressivity, and income risk also
has some impact on the relative contribution of shocks to aggregate consumption
(and to a lesser degree on output). For consumption, demand side shocks become
somewhat more important. In particular, we see that uncertainty shocks con-
tribute significantly. However, given the relatively low degree of price stickiness
and relatively strong monetary stabilization we estimate, the contribution of all



34

demand shocks to output growth is limited.
The HANK models, different to the RANK setting, make it possible to study

the effect of business cycle shocks on inequality; see the middle panels of Figure
1. In fact, the HANK-X model also exploits the inequality time-series data for
the estimation. Again, we find that technology shocks have an important impact
on inequality. However, if we actually use the inequality data for the estimation,
the effect of investment-specific technology shocks in income inequality is tuned
down and markup shocks become more important. For wealth inequality, there is
little difference in the effect of technology shocks between the two models. What
is more, as the HANK-X variant also allows tax-progressivity shocks to impact
on the economy, they gain a visible influence on wealth inequality.

One advantage of the HANK model is that it allows us to think about drivers of
consumption throughout the income and wealth distribution. The bottom panels
of Figure 1 give an example for this and show the variance decomposition of the
average consumption of the 10 percent consumption poorest and consumption
richest households. The differences of which shocks are important for these two
groups are stark. Consumption of the consumption poor is much more strongly
influenced by demand side shocks than consumption of the rich. This suggests
that more detailed data on the time series of the consumption distribution might
be helpful in identifying business cycle shocks in future work.

B. Historical decompositions of inequality

Figure 2 adds to these findings by providing historical decompositions for US
inequality dynamics. Recall that we allow for measurement error on inequality
when estimating the HANK-X model. This implies that neither the HANK nor
the HANK-X variant need to match the inequality data perfectly. The top panels
of the figure compare the model predicted movements of the top 10 wealth and
income shares with the actual data. Perhaps surprisingly, already the HANK
estimate implies a falling wealth inequality during the 1970s which recovers (and
overshoots) in the 21st century. The HANK-X model follows the observed wealth
inequality closely. The model rather changes the shocks and frictions that drive
the business cycle slightly instead of giving up on wealth inequality and “explain-
ing” the data by measurement error.29 In other words, the cross-sectional data is
somewhat informative for the business cycle model, but there is no strong tension.

For income inequality, the situation is different. The HANK models imply a
fluctuation of the income share of the top 10 percent that is too volatile. This high
volatility is driven by large and pro-cyclical swings in profits. Yet, such strong
fluctuations are absent in the income inequality data. Surprisingly, however, the
model does broadly capture the lower frequency movements in income inequality
with its increase since the 1980s. The figure further suggests that persistent
increases in price markup targets are behind those low frequency movements

29The estimated standard deviations of measurement errors can be found in Appendix A.3.
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Figure 2. Historical decompositions: Inequality

in income inequality. This finding resembles the evidence by De Loecker and
Eeckhout (2020) on the evolution of markups in the US.30 Since the cyclical
properties of the top 10 income share largely follow the cyclical properties of
profits in the model, finding too volatile top incomes is intimately linked to the
literature that discusses tensions between model-implied markups/profits and the
data (see, e.g., Andreasen and Dang, 2019; Nekarda and Ramey, 2020). The slow
moving nature of top income shares suggest through the lens of our model that
profit incomes need to be less volatile or less concentrated among the rich. This

30There is a growing literature on the rise of markups; see, e.g., Karabarbounis and Neiman (2019),
Barkai (2020), Hall (2018), or Kehrig and Vincent (2020).
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holds true despite the fact that we allow the model to choose in the estimation
how much surprise changes in profits get distributed to a broader set of households
through the market for profit shares. In terms of the HANK-X specific shocks,
we see that income uncertainty which drives the dispersion of human capital also
has contributed to the increase in income inequality over the last 30 years. This
can be viewed as the model’s way to capture skill-biased technological change.

When we look at the historical evolution of wealth inequality, we observe that
the increase in inequality since its trough in the 1980s is primarily driven by two
factors. First, investment- specific technology shocks that have driven up the
price of capital. Since the wealthy hold a larger share of their wealth in terms
of the illiquid asset in our model, this drives up wealth inequality and resembles
the evidence from household balance sheets (Kuhn, Schularick and Steins, 2020).
The second most important factor is again the persistent increase in markups
that drives up income inequality and thereby affects wealth inequality, too.

C. Robustness of estimation results

We check the robustness of our estimation results with respect to a num-
ber of potentially important modeling choices—where other alternatives would
have been sensible as well. Concretely, we first estimate the model for the post-
Volcker era—implicitly assuming a structural break in 1983. Second, we ask how
the HANK estimation changes if we assume a risk aversion of 2 (instead of 4).
Third, we model the distribution of union profits such that it leads to no wage-
compression and the wage markup only affects labor supply but not directly the
income distribution. Fourth, we allow (in HANK-X) for a systematic response
of tax progressivity to income inequality and, finally, we assume King, Plosser
and Rebelo (1988) preferences instead of Greenwood, Hercowitz and Huffman
(1988) ones, such that there is a wealth effect in labor supply. Modeling details,
estimated parameters, and decompositions are reported in Appendix B.

We find that the view of the business cycle and inequality dynamics through
the lens of the model is relatively robust to these variations, with the exception of
the KPR-variant. In the post-Volcker period, markup shocks become somewhat
more important, in a sense reflecting their larger impact starting in the 1980s
that could be seen already in the historical decompositions for the estimation on
the full sample. A lower risk aversion leaves the decomposition of output almost
unchanged, but investment shocks become less important for consumption and
more important for wealth inequality. The effect of wage compression is negligi-
ble throughout, with the exception of income inequality, similarly the estimated
systematic response of tax progressivity is weak and thus affects results very little.

While the view of the business cycle is broadly similar between the KPR and
GHH variants, marginal data densities clearly prefer the GHH specification both
in RANK and HANK.31 However, the differences become starker when looking
at inequality dynamics. Here, the KPR-HANK model does not reproduce the

31The (log) marginal data densities for RANK and HANK with KPR preferences are 6545 and 6249,
respectively, both lower than those of the models with GHH preferences (see Table 2). The drop in the
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U-shape in wealth inequality and misses the trend in income inequality, which
makes the rejection of the KPR assumption by the data even stronger than the
marginal data densities already indicate.

V. Conclusion

How much does inequality matter for the business cycle and vice versa? To
shed light on this two-way relationship, this paper develops a new reduction tech-
nique and provides a toolbox to estimate New-Keynesian business cycle models
with household heterogeneity and portfolio choice in its state-space representa-
tion via Bayesian methods. Concretely, we leverage the fact that we have prior
information for model reduction and use this to derive a factor representation of
the heterogeneous-agent part of the model. The speed and precision of the pro-
posed solution method is comparable to sequence-space approaches suggested by
Auclert et al. (2021) and Boppart, Krusell and Mitman (2018). One advantage
of the state-space approach lies in the ample tool set that has been developed for
state-space models of the business cycle: for example, variance decomposition at
the business cycle frequency or historical decompositions.

Using the same set of aggregate shocks and observables as in Smets and Wouters
(2007) in the estimation, we find that heterogeneity in household portfolios gives
more precedence to technology shocks in explaining consumption at the expense
of markup shocks. They increase wages of poor households with high marginal
propensities to consume, which leads to more comovement with investment rel-
ative to a setup with representative agent. When including cross-sectional data
and shocks in the estimation, shocks to income risk start to play a role as well—
especially for consumption of poor households.

The model successfully replicates the dynamics of US wealth inequality such
that there is no strong tension between what business cycle analysis suggests as
drivers of the cycle and what the model prefers as drivers of wealth inequality.
Today’s high inequality is a result of technology shocks driving up asset prices and
markup shocks driving up profits, in line with empirical evidence from De Loecker
and Eeckhout (2020) and Kuhn, Schularick and Steins (2020). However, some
tension remains between the aggregate time series and income inequality dynamics
when it comes to markup shocks. The model predicts that profit incomes and
thereby top incomes are too volatile because fitting the aggregates requires large
swings in markups in relative terms. This leaves room for future research using
inequality data to inform researchers better about the calibration and estimation
of the markup process. What is more, we show that different business cycle shocks
impact the percentiles of the consumption distribution differently such that using
detailed data on the consumption distribution dynamics might also help to tighten
the identification of business cycle shocks in future research.

marginal data density when assuming KPR preferences is particularly stark for HANK where wealth
effects on labor supply become even stronger.
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Appendices

A. Data and parameterization

In this appendix, we first list the data sources and transformations in Appendix
A.1 that we employ in order to calibrate the parameters affecting the stationary
distribution and to estimate via Bayesian methods those parameters that do not.
Appendix A.2 then discusses the re-parameterization of the RANK model steady
state. In Appendix A.3, we present the posterior estimates of the structural shock
processes. Appendix A.4 contains the variance decompositions of observables not
shown in the main text. In Appendix A.5, we provide the credible intervals for
all variance decompositions of observables. Appendix A.6 contains historical de-
compositions of observables and further variables of interest based on the HANK
and HANK-X models, and Appendix A.7 provides IRFs to all structural shocks
for RANK, HANK, and HANK-X. Finally, Appendix A.8 provides convergence
diagnostics for the MCMC chains.

A.1. Data: Sources and transformations

Data for calibration

The following list contains the data sources for the average data ratios we
target in the calibration of the stationary equilibrium. Unless otherwise noted,
all series are available from 1954 to 2019 from the St.Louis FED - FRED database
(mnemonics in parentheses).

Mean illiquid assets. Fixed assets (K1TTOTL1ES000) over quarterly GDP
(excluding net exports; see below), averaged over 1954 – 2019 (U.S. Bureau
of Economic Analysis, 2023a).

Mean government debt. Gross federal debt held by the public as percent of
GDP (FYPUGDA188S), averaged over 1954 – 2019 (U.S. Office of Manage-
ment and Budget and Federal Reserve Bank of St. Louis, 2023).

Average top 10 share of wealth. Source is the World Inequality Database
(2023), averaged over 1954 – 2019.
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Data for estimation

Formally, the vector of observable variables is given by:

OBSt =


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∆ log
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
where ∆ denotes the temporal difference operator and bars above variables denote
time-series averages.

Unless otherwise noted, all series are available at quarterly frequency from
1954Q3 to 2019Q4 from the St.Louis FED - FRED database (mnemonics in paren-
theses). The data originates from U.S. Bureau of Economic Analysis (2023b); U.S.
Bureau of Labor Statistics (2023a,b); Board of Governors of the Federal Reserve
System (U.S.); Wu and Xia (2016); Bayer et al. (2019) and U.S. Social Security
Administration (2023).
Output, Yt. Sum of gross private domestic investment (GPDI), personal con-

sumption expenditures for nondurable goods (PCND), durable goods (PCDG),
and services (PCESV), and government consumption expenditures and gross
investment (GCE) divided by the GDP deflator (GDPDEF) and the civilian
noninstitutional population (CNP16OV).

Consumption, Ct. Sum of personal consumption expenditures for nondurable
goods (PCND), durable goods (PCDG), and services (PCESV) divided by
the GDP deflator (GDPDEF) and the civilian noninstitutional population
(CNP16OV).

Investment, It. Gross private domestic investment (GPDI) divided by the GDP
deflator (GDPDEF) and the civilian noninstitutional population (CNP16OV).

Real wage, wF
t . Hourly compensation in the nonfarm business sector (COMP-

NFB) divided by the GDP deflator (GDPDEF).

Hours worked, Nt. Nonfarm business hours worked (HOANBS) divided by
the civilian noninstitutional population (CNP16OV).

Inflation, πt. Computed as the log-difference of the GDP deflator (GDPDEF).
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Nominal interest rate, Rb
t . Quarterly average of the effective federal funds

rate
(FEDFUNDS). From 2009Q1 to 2015Q4, we use the Wu and Xia (2016)
shadow federal funds rate.

Wealth inequality, T10WSharet. p90p100 of US net personal wealth from
the World Inequality Database (2023). Available annually 1954 to 2019.

Income inequality, T10ISharet. p90p100 of US pre-tax national income from
the World Inequality Database (2023). Available annually 1954 to 2019.

Idiosyncratic income risk, st. We take the estimated time series for the
variance of idiosyncratic income from Bayer et al. (2019) who use the Survey
of Income and Program Participation. Available from 1983Q1 to 2013Q1.

Tax progressivity, τPt . We follow Ferriere and Navarro (2023) and construct
our measure of tax progressivity using the average and average marginal
tax rate: P = (AMTR - ATR)/(1 - ATR). For a loglinear tax system, this
measure equals the parameter capturing the curvature of the tax function.
Available annually 1954 to 2017.

Details on the construction of the tax-progressivity measure

We extend the Mertens and Montiel Olea (2018)-calculations of average (ATR)
and average marginal tax rates (AMTR) to the years 2013-2017. First, in con-
structing the ATR series, we obtain total tax liabilities for 1929-2017, from the
National Income and Product Accounts (NIPA, U.S. Bureau of Economic Analy-
sis, 2023b), Table 3.2. Federal social insurance contributions, which are added to
total tax liability, come from NIPA, Table 3.6, line 3 and 21. For total income,
we take Piketty and Saez (2003)’s income series, which uses a broader income
concept based on adjusted gross income, excluding taxable social security and
unemployment insurance benefits.

The AMTR is the sum of the average marginal individual income tax rate
(AMIITR) and the average marginal payroll tax rate (AMPRT). We follow Fer-
riere and Navarro (2023) and use Saez (2004)’s income concept.32 This income
concept includes all income items reported on an individual’s tax return before
deductions and excluding capital gains. Income items include salaries and wages,
small business/farm income, partnership and fiduciary income, dividends, inter-
est, rents, royalties and other small items reported as other income. Realized
capital gains are excluded in this measure of income.

To construct the AMTR, we first use several tables from the Statistics of Income
(SOI, U.S. Internal Revenue Service, 2023) to construct the discrete distributions
of adjusted gross income by income brackets needed for the AMIITR. Table 1.1 All

32For a detailed explanation on the construction of the AMTRs; see Appendix A of Mertens and
Montiel Olea (2018). We follow method 1 for computing the AMIITRs.
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Returns of the SOI archives contains information on number of returns, adjusted
gross income (AGI), and taxable income for different ranges of AGI per return.
These ranges define the discretization. Given the distribution is fit for every year
and by filing status, Table 1.2 All Returns: by Marital Status provides the equiv-
alent table distinguishing by filing status, e.g., married filing jointly or separately,
head of household, single, and surviving spouse. Table 1.3 All Returns: Sources
of Income provides information on how many of these returns reported income
from salaries and wages. Table 1.4 All Returns: Sources of Income, Adjustments,
and Tax Items contains data on taxable income and number of corresponding
returns by bracket. Table 3.3 All Returns: Tax Liability, Tax Credits, and Tax
Payments provides information on how many filed for self-employment and their
tax liability. Finally, Table 3.4 contains the number of returns and adjusted gross
income by marginal tax bracket and filing status using.

To construct the Average Marginal Payroll Tax Rate (AMPTR), we collect data
from the 2019 Annual Statistical supplement (U.S. Social Security Administra-
tion, 2023), Table 2.A3 (columns 1, 2, 3 and 9), to obtain the taxation of labor
and self-employed earnings under the Old Age, Survivors and Disability Insurance
(OASDI) and Hospital Insurance (HI) programs. The columns respectively cover
the number of covered workers and self employed with maximum earnings as well
as total taxable earnings. Their difference allows us to calculate the total taxable
earnings of covered workers with earnings below the maximum. Information on
earnings can be found in Table 4.B from the same source.
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A.2. RANK calibration

Table A.1 shows the steady-state parameterization of the representative-agent
analogue of the HANK model. We adjust the discount factor to match a capital-
to-output ratio of 11.44 (quarterly) and the level of the tax rate to match the
ratio of government-spending-to-output (0.2). All other parameters are externally
chosen and equal to the parameterizaton of the HANK model.

Table A.1—External/calibrated parameters in RANK (quarterly frequency)

Parameter Value Description Target
Households
β 0.996 Discount factor K/Y=11.44
ξ 4.000 Relative risk aversion Kaplan et al. (2018)
γ 2.000 Inverse of Frisch elasticity Chetty et al. (2011)
Firms
α 0.680 Share of labor 62% labor income
δ0 0.018 Depreciation rate 7.0% p.a.
η̄ 11.000 Elasticity of substitution Price markup 10%
ζ̄ 11.000 Elasticity of substitution Wage markup 10%
Government
τ̄L 0.250 Tax rate level G/Y = 0.2
τ̄P 0.120 Tax progressivity SoI 1954 - 2019
R̄b 1.000 Nominal rate Growth ≈ interest rate
π̄ 1.000 Inflation Indexation, w.l.o.g.
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A.3. Estimated structural shock processes

Table A.2 presents prior and posterior distributions of the estimated shock
processes. The RANK and HANK version only include seven standard aggregate
shocks, while the HANK-X version also includes shocks to income risk and tax
progressivity.

Table A.2—Prior and posterior distributions of estimated shocks and measurement errors

Prior Posterior
Parameter Distribution Mean Std. Dev. RANK HANK HANK-X

Structural Shocks

ρA Beta 0.50 0.20 0.943 0.947 0.982
(0.915, 0.969) (0.918, 0.974) (0.960, 0.997)

σA Inv.-Gamma 0.10 2.00 0.222 0.219 0.147
(0.178, 0.271) (0.167, 0.270) (0.118, 0.182)

ρZ Beta 0.50 0.20 0.996 0.996 0.998
(0.994, 0.997) (0.994, 0.998) (0.997, 0.999)

σZ Inv.-Gamma 0.10 2.00 0.576 0.624 0.600
(0.526, 0.629) (0.571, 0.682) (0.553, 0.652)

ρΨ Beta 0.50 0.20 0.721 0.658 0.751
(0.667, 0.772) (0.600, 0.715) (0.692, 0.807)

σΨ Inv.-Gamma 0.10 2.00 16.723 13.397 7.282
(13.019, 20.699) (11.042, 16.03) (6.623, 8.006)

ρµ Beta 0.50 0.20 0.964 0.895 0.894
(0.935, 0.989) (0.871, 0.917) (0.868, 0.917)

σµ Inv.-Gamma 0.10 2.00 1.276 1.250 1.386
(1.116, 1.465) (1.099, 1.425) (1.208, 1.596)

ρµw Beta 0.50 0.20 0.888 0.900 0.892
(0.847, 0.925) (0.874, 0.922) (0.860, 0.918)

σµw Inv.-Gamma 0.10 2.00 3.663 3.452 3.742
(3.105, 4.381) (3.002, 3.996) (3.170, 4.466)

σD Inv.-Gamma 0.10 2.00 0.541 0.534 0.378
(0.457, 0.636) (0.444, 0.628) (0.326, 0.433)

ρP Beta 0.50 0.20 — — 0.919
(—, —) (—, —) (0.883, 0.950)

σP Inv.-Gamma 0.10 2.00 — — 6.865
(—, —) (—, —) (5.839, 8.082)

σs Gamma 65.00 30.00 — — 69.227
(—, —) (—, —) (61.367, 78.082)

Measurement Errors

σme
I10 Inv.-Gamma 0.05 0.01 — — 2.208

(—, —) (—, —) (1.868, 2.600)
σme
W10 Inv.-Gamma 0.05 0.01 — — 7.544

(—, —) (—, —) (6.412, 8.861)
Note: The table displays the estimated shock processes and measurement errors, their priors and posterior
means across three model variants: RANK, HANK, and HANK-X. The 90% credible intervals are shown
in parentheses. Posteriors are obtained by an MCMC method. The standard deviations have been
multiplied by 100 for better readability.
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A.4. Variance decompositions of further observables

Figure A.1 shows the variance decomposition of all observables not shown in
the main text for the estimated models.
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Note: Variance decompositions at business cycle frequency of all observables not contained in the main
text but used in HANK-X. Income risk is constant in RANK and HANK. Tax progressivity as an
exogenous process is omitted.

Figure A.1. Variance decompositions of further observables
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A.5. Credible intervals of variance decompositions

Table A.3 shows the credible intervals of all shown variance decomposition of
for the RANK, the HANK, and the HANK-X model. The credible intervals are
obtained by sampling 1000 times from the posterior.

Table A.3—Variance decompositions with credible intervals

tfp inv.-spec. tech. price markup wage markup risk premium mon. policy structural deficit tax progr. income risk
RANK

output growth 14.0 49.9 11.9 17.8 0.9 0.8 4.7 – –
(11.2, 16.3) (46.4, 54.8) (9.5, 15.1) (13.2, 18.4) (0.5, 2.0) (0.5, 1.1) (3.3, 5.7)

consumption growth 27.5 7.9 14.9 38.2 7.3 3.5 0.6 – –
(24.6, 32.3) (7.0, 9.2) (12.7, 17.6) (30.9, 40.0) (6.0, 10.3) (2.9, 4.9) (0.4, 1.1)

investment growth 0.8 95.1 1.2 0.4 0.5 0.1 1.9 – –
(0.6, 1.0) (94.0, 96.2) (0.6, 1.8) (0.3, 0.6) (0.3, 0.7) (0.1, 0.2) (1.5, 2.1)

employment 4.2 28.7 14.2 45.7 3.4 1.5 2.3 – –
(3.8, 5.0) (25.3, 34.1) (11.9, 18.6) (39.0, 45.7) (2.8, 5.2) (1.1, 2.2) (1.8, 2.7)

wage growth 6.5 14.8 40.4 33.9 0.4 0.1 3.8 – –
(4.9, 8.5) (13.1, 18.5) (38.2, 44.0) (29.5, 34.8) (0.4, 1.0) (0.1, 0.5) (2.8, 5.4)

nominal rate 2.6 52.1 3.6 3.1 16.2 13.1 9.2 – –
(2.3, 3.8) (47.6, 57.0) (2.5, 5.8) (2.2, 4.3) (12.3, 20.6) (11.1, 14.9) (6.1, 12.7)

inflation 8.5 38.0 10.5 10.6 18.2 4.3 9.7 – –
(7.1, 11.1) (32.1, 42.7) (7.8, 16.2) (8.5, 12.0) (14.2, 23.0) (3.4, 5.5) (6.3, 13.7)

HANK
output growth 16.7 56.8 7.8 15.3 0.7 0.6 2.1 – –

(13.9, 19.6) (51.8, 62.1) (6.1, 9.6) (12.3, 18.4) (0.3, 1.5) (0.5, 0.9) (1.4, 3.0)
consumption growth 30.2 22.9 14.5 23.6 5.7 2.3 0.8 – –

(25.7, 35.3) (18.6, 27.5) (12.1, 17.1) (19.3, 27.5) (4.4, 7.5) (1.7, 3.1) (0.6, 1.5)
investment growth 1.7 93.2 0.8 0.6 1.3 0.3 2.1 – –

(1.2, 2.3) (91.5, 94.6) (0.5, 1.2) (0.4, 0.9) (0.7, 2.0) (0.2, 0.4) (1.6, 2.7)
employment 5.2 34.4 9.0 45.7 2.8 1.1 1.7 – –

(4.2, 6.4) (28.6, 41.1) (7.2, 11.0) (39.3, 51.9) (1.9, 4.1) (0.8, 1.6) (1.2, 2.3)
wage 9.3 19.4 49.0 19.5 0.4 0.2 2.3 – –

(7.2, 11.8) (16.3, 24.3) (42.9, 53.2) (15.3, 23.9) (0.2, 1.0) (0.1, 0.5) (1.5, 3.3)
nominal rate 2.3 42.6 1.4 2.7 21.7 17.6 11.8 – –

(1.4, 3.4) (35.3, 51.2) (0.9, 2.2) (1.6, 3.9) (17.6, 26.3) (13.4, 22.0) (6.5, 16.3)
inflation 8.3 34.2 5.4 9.5 23.1 5.6 13.9 – –

(6.2, 10.5) (28.3, 41.9) (3.7, 7.4) (6.9, 11.9) (19.0, 27.7) (4.3, 7.1) (7.9, 19.2)
HANK-X

output growth 15.6 51.6 10.8 15.8 1.6 1.7 1.9 0.4 0.5
(13.0, 18.9) (46.9, 56.7) (8.8, 13.1) (12.6, 18.7) (0.9, 2.6) (1.3, 2.4) (1.2, 2.7) (0.3, 0.5) (0.4, 0.7)

consumption growth 26.6 16.8 14.9 22.4 5.8 4.2 0.9 0.3 8.0
(22.1, 31.5) (13.9, 20.2) (12.4, 17.1) (18.0, 25.8) (4.7, 7.7) (3.4, 5.4) (0.7, 1.6) (0.2, 0.5) (6.4, 10.1)

investment growth 2.1 89.7 1.9 1.3 1.7 0.7 2.4 0.0 0.1
(1.6, 2.7) (87.7, 91.4) (1.4, 2.6) (1.0, 1.7) (1.2, 2.4) (0.5, 1.0) (1.8, 3.1) (0.0, 0.1) (0.0, 0.1)

employment 5.5 29.7 11.6 44.5 2.9 2.5 1.6 1.1 0.6
(4.6, 6.7) (25.9, 34.8) (9.5, 13.8) (38.8, 48.8) (2.1, 4.2) (2.0, 3.4) (1.1, 2.1) (0.8, 1.6) (0.5, 0.9)

wage 7.7 19.4 45.8 23.0 0.9 0.9 1.4 0.6 0.3
(6.0, 9.9) (16.5, 23.3) (40.4, 49.9) (18.4, 28.4) (0.5, 1.7) (0.5, 1.4) (0.9, 2.2) (0.4, 0.9) (0.2, 0.4)

nominal rate 2.4 48.4 2.5 3.7 22.0 15.0 5.2 0.2 0.7
(1.6, 3.3) (40.6, 55.8) (1.7, 3.5) (2.6, 5.1) (17.7, 26.5) (11.8, 19.2) (2.7, 8.4) (0.1, 0.3) (0.5, 1.0)

inflation 8.3 32.6 8.5 11.8 22.1 9.2 6.1 0.5 0.9
(6.4, 10.5) (26.6, 38.8) (6.2, 11.1) (9.0, 14.6) (18.2, 26.6) (7.5, 11.4) (3.3, 9.6) (0.3, 0.7) (0.6, 1.2)

uncertainty 2.7 8.8 1.8 2.8 0.2 0.3 0.3 0.1 82.9
(2.1, 3.5) (6.8, 11.5) (1.3, 2.4) (2.1, 3.7) (0.1, 0.4) (0.2, 0.4) (0.2, 0.4) (0.0, 0.1) (78.4, 86.5)

tax progressivity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (100.0, 100.0) (0.0, 0.0)

T10 wealth share 1.6 47.1 37.4 2.4 4.7 2.2 1.3 3.0 0.3
(1.1, 2.2) (39.2, 54.5) (31.0, 43.0) (1.2, 4.1) (3.3, 7.8) (1.7, 2.9) (0.8, 1.8) (1.9, 4.3) (0.2, 0.5)

T10 income share 6.9 35.1 32.2 19.1 2.5 0.8 1.5 0.4 1.6
(5.8, 8.5) (28.3, 42.8) (26.7, 36.9) (14.8, 23.9) (1.6, 4.1) (0.6, 1.2) (1.2, 2.0) (0.3, 0.5) (1.2, 2.1)

Note: The table displays variance decompositions at business cycle frequencies and their (5,95)-credible
intervals for all observables and shocks in the RANK, HANK, and HANK-X models. The credible
intervals are obtained by sampling 1000 times from the posterior.
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A.6. Historical decompositions of further observables

Figure A.2 shows the historical decomposition of all observables for the es-
timation of the HANK model and Figures A.3 for the HANK-X model. Figure
A.4 shows the historical decomposition of non-observed variables target markups,
profits, and the Top 1 percent share of income in the HANK-X model.

(a) Output growth (b) Consumption growth (c) Investment growth

(d) Wage growth (e) Hours worked (f) Policy rate

(g) Inflation
Note: Historical decompositions of all observables in HANK. Y-axis: Percent deviation from mean.

Figure A.2. Historical decompositions of observables in HANK
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(a) Output growth (b) Consumption growth (c) Investment growth

(d) Wage growth (e) Hours worked (f) Policy rate

(g) Inflation (h) Tax progressivity (i) Income risk

(j) Top 10 income share (k) Top 10 wealth share

Shock 

■ t fp inv .-spec. tech.

mon. policy ■ structural deficit

■ price markup wage markup ■ risk premium 

■ tax prog. ■ incarne risk

Note: Historical decompositions of all observables in HANK-X. Y-axis: Percent deviation from mean.

Figure A.3. Historical decompositions of observables in HANK-X
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(a) Price markup target (b) Wage markup target (c) Profits

(d) Top 1 income share (e) Top 1 wealth share
Note: Historical decompositions of further unobserved variables in HANK-X. Y-axis: Percent deviation
from mean.

Figure A.4. Historical decompositions of further variables in HANK-X

A.7. Impulse Responses

Figures A.5 – A.9 plot the impulse response functions for the estimated RANK,
HANK, and HANK-X model. The first panel on the top left corner of each figure
shows the shock and the remaining panels show the responses of all potential
observables.
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Note: Top: IRF to a structural deficit shock. Bottom: IRF to a monetary policy shock. Blue-dashed
line: RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for
the nominal rate and inflation, otherwise percent.

Figure A.5. IRFs to structural deficit and monetary policy shocks
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Note: Top: IRF to a price-markup shock. Bottom: IRF to a wage-markup shock. Blue-dashed line:
RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for the
nominal rate and inflation, otherwise percent.

Figure A.6. IRFs to markup shocks
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Note: Top: IRF to a TFP shock. Bottom: IRF to an MEI shock. Blue-dashed line: RANK; red
dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for the nominal rate
and inflation, otherwise percent.

Figure A.7. IRFs to technology shocks
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Note: Top: IRF to a risk premium shock. Bottom: IRF to an income risk shock. Blue-dashed line:
RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for the
nominal rate and inflation, otherwise percent.

Figure A.8. IRFs to risk premium and income risk shocks
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Note: IRF to a tax progressivity shock. Blue-dashed line: RANK; red dashed-dotted line: HANK; black
solid line: HANK-X. Y-axis: Percentage points for the nominal rate and inflation, otherwise percent.

Figure A.9. IRFs to a tax progressivity shock
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A.8. MCMC diagnostics

We estimate each model using a single RWMH chain after an extensive mode
search. After burn-in, 400,000 draws from the posterior distribution are used
to compute the posterior statistics. The acceptance rates across chains are be-
tween 20% and 30%. Here, we provide Geweke (1992) convergence statistics for
individual parameters of the RANK, HANK, and HANK-X models as well as
traceplots for HANK and HANK-X. Geweke (1992) tests the equality of means of
the first 10% of draws and the last 50% of draws (after burn-in). If the samples
are drawn from the stationary distribution of the chain, the two means are equal
and Geweke’s statistic has an asymptotically standard normal distribution. Ta-
ble A.4 reports the Geweke z-score statistic and the p-value for each parameter.
Taking the evidence from Geweke (1992) and the traceplot graphs together, we
conclude that our chains have converged. No individual Geweke test rejects at
the one percent level and only a small number reject at the five percent level,
which can be expected from the multiple-testing nature of the exercise.
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Table A.4—Geweke (1992) convergence diagnostics

RANK HANK HANK-X
Parameter z-stat p-value z-stat p-value z-stat p-value

δs -0.013 0.989 -2.101 0.036 1.340 0.180
ϕ -0.256 0.798 -2.241 0.025 -0.622 0.534
κ -0.968 0.333 0.712 0.476 -0.374 0.708
κw 1.149 0.251 0.769 0.442 -0.819 0.413
ιΠ — — 0.580 0.562 -0.152 0.879
ρA -0.551 0.582 0.835 0.404 -0.875 0.382
σA 0.594 0.552 -0.873 0.383 1.149 0.251
ρZ 0.600 0.549 0.156 0.876 -0.343 0.732
σZ -0.50 0.617 0.065 0.948 2.193 0.028
ρΨ -0.062 0.950 -2.144 0.032 0.896 0.370
σΨ -0.295 0.768 -0.701 0.483 -0.515 0.606
ρµ -1.178 0.239 0.086 0.932 -1.444 0.149
σµ 0.363 0.716 -0.38 0.704 1.479 0.139
ρµw 1.355 0.175 0.593 0.553 -0.172 0.863
σµw -1.375 0.169 0.065 0.948 0.400 0.689
ρs — — — — 1.458 0.145
σs — — — — -0.483 0.629
Σy — — — — 0.221 0.825
ρR -0.327 0.744 0.214 0.831 -0.284 0.777
σR -0.272 0.786 -0.609 0.542 0.857 0.391
θπ 1.215 0.224 1.024 0.306 -0.392 0.695
θY -0.395 0.693 0.985 0.324 0.598 0.550
γB -0.497 0.619 -0.236 0.813 -0.223 0.823
γπ 0.601 0.548 1.862 0.063 0.360 0.719
γY -0.55 0.582 0.617 0.537 -1.463 0.143
ρD -0.155 0.877 0.607 0.544 1.774 0.076
σD -0.81 0.418 -0.771 0.440 -0.42 0.674
ρτ 0.930 0.352 -0.289 0.773 -0.574 0.566
γτB 1.263 0.206 -0.216 0.829 0.131 0.896
γτY 1.048 0.295 1.827 0.068 -0.513 0.608
ρP — — — — -1.407 0.159
σP — — — — -0.734 0.463

σme
W10 — — — — 0.197 0.844
σme
I10 — — — — 0.011 0.991

Note: Note: Geweke (1992) equality of means test of the first 10% vs. the last 50% of draws. Failure to
reject the null of equal means indicates convergence.
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Figure A.10. MCMC draws of HANK model
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Figure A.11. MCMC draws of HANK model
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Figure A.12. MCMC draws of HANK-X model
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Figure A.13. MCMC draws of HANK-X model
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Figure A.14. MCMC draws of HANK-X model
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B. Robustness to alternative specifications

We estimate five variants of our model to understand the effect of potentially
important data and modeling choices: 1) sample 1983-2019, 2) risk aversion (2
instead of 4), 3) paying out union profits proportional to idiosyncratic productiv-
ity (no wage compression), 4) systematic response of tax progressivity to income
inequality, 5) King, Plosser and Rebelo (1988) preferences instead of Greenwood,
Hercowitz and Huffman (1988).

Appendix B.1 provides more details on each variant. Appendix B.2 contains the
estimated parameters, Appendix B.3 the variance decompositions for all variants,
and Appendix B.4 the historical decomposition of income and wealth inequality
for the variants with risk aversion 2 and KPR preferences.

B.1. Description of variants

Below we quickly describe the recalibration of the steady state for variants 2)
risk aversion, 3) union profits, and 5) KPR preferences. The other two variants,
1) sample split and 4) fiscal response to inequality, do not require a recalibration
of the steady state. The sample split estimation is run using the same model
and calibration as in the baseline. Allowing for a feedback coefficient of tax
progressivity to the top 10 income share only affects the aggregate model part.

Risk aversion 2

Changing the coefficient of relative risk aversion to 2 (instead of 4) requires a
recalibration of the steady state to match the same targets as listed in Table 1. In
particular, we adjust the discount factor, the asset market participation frequency,
the fraction of entrepreneurs, and the borrowing penalty. The re-calibration yields
β = 0.992, λ = 4.5%, ζ = 1/3750, and R̄ = 2.18%.

Proportional union profits

Paying out union profits proportional to idiosyncratic productivity (instead of
lump sum) affects the steady-state distribution of income and requires a recal-
ibration. Again, we adjust the discount factor, the asset market participation
frequency, the fraction of entrepreneurs, and the borrowing penalty. The re-
calibration yields β = 0.982, λ = 7.0%, ζ = 1/7500, and R̄ = 1.35%.

Fiscal response to inequality

We change the policy rule for the tax progressivity parameter, τPt , in HANK-X
to the following:

(B.1) τPt
τ̄P

=

(
τPt−1

τ̄P

)ρ
τP (

T10ISharet

T10IShare

)(1−ρ
τP

)γτP

W

ϵPt ,
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where the new parameter γτPW captures the response of tax progressivity to income
inequality. Its prior follows a standard normal distribution . We find that tax
progressivity does respond to the top 10 income share with an estimated elasticity
of 0.41. In the US, the fiscal authority responds to higher income inequality by
increasing the progressivity of taxes thereby mitigating the increase in pre-tax
income inequality to post-tax income inequality. However, tax progressivity is
still largerly driven by exogenous shocks ϵPt as the feedback from inequality is
quantitatively small.

KPR preferences

The assumption of GHH preferences is mainly motivated by the fact that many
estimated DSGE models of business cycles find small aggregate wealth effects in
the labor supply; see, e.g., Schmitt-Grohé and Uribe (2012); Born and Pfeifer
(2014). Unfortunately, it is not feasible to estimate the flexible form of preference
of Jaimovich and Rebelo (2009), which also encompasses King, Plosser and Rebelo
(1988) (KPR) preferences. This would require solving the stationary equilibrium
in every likelihood evaluation, which is substantially more time consuming than
solving for the dynamics around this equilibrium. However, we estimate a version
with KPR preferences; see below for details.

According to the marginal data density, the data clearly prefer the GHH speci-
fication over the KPR specification. What is more, the KPR version of the HANK
model has more difficulty matching business cycle and inequality dynamics simul-
taneously.

The GHH assumption has been criticized by Auclert, Bardóczy and Rognlie
(2023) on the basis of producing “too high” multipliers. In a companion paper
(Bayer, Born and Luetticke, 2023), we show that our model produces multipliers
of reasonable size both in the short and in the long run. The reason for this
lies in the combination of model elements only briefly discussed or even absent
in the stylized Auclert, Bardóczy and Rognlie (2023) economy: sticky wages,
distortionary taxes, capacity utilization, and a Taylor rule. Capacity utilization
allows for output adjustment without adjusting hours; additional wage stickiness
translates increasing labor demand into higher wage markups instead of hours
and consumption; distortionary taxes absorb an additional fraction of income;
and the Taylor rule translates the fiscal shock into to a real interest rate increase.
The back-of-the envelope calculation of the multiplier based on formula (15) in
Auclert, Bardóczy and Rognlie (2023), counter-factually assuming fixed real rates
and ignoring capacity utilization, would be: (1− (1− τ)(η − 1)/η(ζ − 1)/ζ)−1 ≈
2.5. The true multiplier in the model with capacity utilization and interest rate
response is, in line with the data, much smaller.

Changing the preferences to King, Plosser and Rebelo (1988) preferences (in-
stead of Greenwood, Hercowitz and Huffman (1988)) also requires the recalibra-
tion of the steady state. The felicity function u, additively separable in consump-



BAYER ET AL.: SHOCKS, FRICTIONS, AND INEQUALITY 71

tion and leisure, now reads:

(B.2) u(cit, nit) =
c1−ξ
it − 1

1− ξ
− γshift

n1+γ
it − 1

1 + γ
,

with risk aversion parameter ξ > 0 and inverse Frisch elasticity γ > 0. The
first-order condition for labor supply is:

(B.3) nit =

[
1

γshift
u′(c)(1− τ̄P )(1− τLt )(whit)

(1−τ̄P )

]( 1

γ+τ̄P

)
.

We recalibrate the steady state to match the capital-to-output ratio, the bonds-to-
capital ratio, the fraction of borrowers, and the top 10 wealth share as reported
in Table 1. This yields a discount factor of β = 0.988, a portfolio adjustment
probability of λ = 8.25%, a borrowing penalty of R̄ = 3.56%, and a probability
of becoming an entrepreneur of 1/2000.

B.2. Parameter estimates

Table B.5 displays the estimation results for the model variants. The estimated
parameters are broadly similar across variants with some exceptions. The KPR
estimates feature lower real frictions and a different parameterization of the tax
rule.
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Table B.5—Posterior distributions: model variants

Parameter Posterior

HANK (Post-83) HANK (RA2) HANK (Union) HANK-X (Tax) HANK (KPR)

Frictions

δs 1.060 2.516 0.929 0.871 0.168
(0.981, 1.137) (1.937, 3.135) (0.667, 1.237) (0.588, 1.193) (0.085, 0.268)

ϕ 2.876 3.429 4.277 2.493 0.321
(2.168, 3.576) (2.557, 4.332) (3.427, 5.293) (1.694, 3.334) (0.212, 0.454)

κ 0.082 0.217 0.179 0.151 0.091
(0.057, 0.113) (0.174, 0.264) (0.138, 0.225) (0.117, 0.188) (0.078, 0.105)

κw 0.268 0.318 0.311 0.253 0.314
(0.197, 0.347) (0.249, 0.392) (0.243, 0.383) (0.189, 0.321) (0.241, 0.397)

ιΠ 0.693 0.174 0.298 0.695 0.205
(0.599, 0.786) (0.021, 0.433) (0.044, 0.673) (0.342, 0.949) (0.173, 0.234)

Debt and monetary policy rules

ρR 0.862 0.780 0.781 0.811 0.736
(0.842, 0.881) (0.751, 0.806) (0.754, 0.806) (0.785, 0.835) (0.704, 0.766)

σR 0.136 0.247 0.230 0.226 0.264
(0.122, 0.153) (0.226, 0.269) (0.211, 0.251) (0.208, 0.245) (0.240, 0.289)

θπ 2.933 2.164 1.786 2.024 2.088
(2.636, 3.237) (1.959, 2.389) (1.578, 1.995) (1.784, 2.273) (1.931, 2.259)

θY 0.193 0.197 0.196 0.212 0.335
(0.119, 0.269) (0.128, 0.265) (0.130, 0.265) (0.142, 0.282) (0.275, 0.396)

γB 0.020 0.088 0.026 0.007 0.006
(0.004, 0.042) (0.047, 0.133) (0.003, 0.070) (0.001, 0.023) (0.001, 0.015)

γπ -2.334 -2.803 -3.085 -2.319 -1.90
(-2.671, -2.023) (-3.153, -2.474) (-3.583, -2.674) (-2.642, -2.037) (-2.06, -1.744)

γY -0.63 -0.822 -0.901 -0.533 -0.287
(-0.74, -0.528) (-0.922, -0.726) (-1.099, -0.735) (-0.69, -0.397) (-0.336, -0.241)

ρD 0.968 0.969 0.921 0.950 0.990
(0.938, 0.990) (0.938, 0.991) (0.878, 0.961) (0.912, 0.985) (0.980, 0.997)

σD 0.282 0.481 0.619 0.422 0.322
(0.218, 0.355) (0.402, 0.568) (0.524, 0.732) (0.347, 0.508) (0.286, 0.362)

Tax rules

ρτ 0.411 0.270 0.405 0.422 0.419
(0.276, 0.554) (0.110, 0.429) (0.212, 0.573) (0.256, 0.570) (0.409, 0.429)

γτ
B 3.120 2.270 2.519 3.098 -0.202

(3.068, 3.173) (1.396, 3.233) (1.511, 3.656) (2.199, 4.059) (-0.219, -0.186)
γτ
Y 0.788 2.269 1.976 0.162 -0.455

(0.757, 0.818) (2.160, 2.384) (0.474, 3.357) (-1.404, 1.662) (-0.471, -0.44)
ρP — — — 0.917 —

(—, —) (—, —) (—, —) (0.882, 0.947) (—, —)
σP — — — 6.909 —

(—, —) (—, —) (—, —) (5.870, 8.160) (—, —)
γP
W — — — 0.230 —

(—, —) (—, —) (—, —) (-0.095, 0.532) (—, —)

Structural shocks

ρA 0.942 0.931 0.961 0.991 0.942
(0.910, 0.969) (0.897, 0.962) (0.926, 0.990) (0.973, 0.998) (0.927, 0.956)

σA 0.178 0.230 0.175 0.137 0.164
(0.152, 0.209) (0.187, 0.276) (0.116, 0.244) (0.109, 0.173) (0.147, 0.182)

ρZ 0.995 0.991 0.997 0.998 0.880
(0.992, 0.998) (0.988, 0.995) (0.996, 0.999) (0.997, 0.999) (0.863, 0.896)

σZ 0.551 0.611 0.623 0.597 1.799
(0.491, 0.619) (0.565, 0.661) (0.572, 0.678) (0.551, 0.646) (1.651, 1.958)

ρΨ 0.782 0.703 0.583 0.729 0.960
(0.710, 0.846) (0.651, 0.754) (0.513, 0.653) (0.666, 0.793) (0.953, 0.967)

σΨ 6.869 14.609 14.961 8.831 3.629
(5.482, 8.415) (11.338, 18.073) (12.265, 18.149) (6.444, 11.463) (3.110, 4.225)

ρµ 0.813 0.897 0.924 0.901 0.994
(0.759, 0.859) (0.870, 0.922) (0.903, 0.942) (0.876, 0.923) (0.962, 1.000)

σµ 1.800 1.143 1.163 1.323 0.375
(1.457, 2.247) (1.019, 1.287) (1.028, 1.318) (1.160, 1.516) (0.314, 0.557)

ρµw 0.907 0.921 0.938 0.895 0.789
(0.875, 0.932) (0.897, 0.943) (0.912, 0.961) (0.865, 0.920) (0.745, 0.829)

σµw 3.944 3.302 3.133 3.678 3.032
(3.265, 4.803) (2.900, 3.773) (2.771, 3.566) (3.136, 4.354) (2.547, 3.606)

Income risk process

ρs — — — 0.522 —
(—, —) (—, —) (—, —) (0.451, 0.585) (—, —)

σs — — — 68.278 —
(—, —) (—, —) (—, —) (60.81, 76.774) (—, —)

Σy — — — 22.216 —
(—, —) (—, —) (—, —) (22.14, 22.293) (—, —)

Measurement errors

σme
W10 — — — 1.977 —

(—, —) (—, —) (—, —) (1.620, 2.389) (—, —)
σme
I10 — — — 8.122 —

(—, —) (—, —) (—, —) (6.744, 9.741) (—, —)

Note: The standard deviations of the shocks and measurement errors have been transformed into per-
centages by multiplying by 100. HANK (Post-83): HANK model estimated on post-Volcker data only;
HANK (RA2): HANK model with risk aversion 2 instead of 4; HANK (Union): HANK model in which
union profits are payed out proportionally to idiosyncratic productivity; HANK-X (Tax): HANK-X
model with income-inequality feedback to tax progressivity; HANK (KPR): HANK model with KPR
instead of GHH preferences. For more details see text.
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B.3. Variance decompositions

Figure B.15 shows that the variance decompositions are similar across all vari-
ants. Shocks to investment specific technology are by far the most important
driver of output growth (explaining 40-60%), followed with some distance by
shocks to TFP and wage markups. The same three shocks are prominent in con-
sumption growth but of more equal importance and with TFP being the most
important one. The variance decompositions of top 10 wealth and income shares
are also quite similar. The outliers are KPR preferences and risk aversion 2. The
former variant finds a larger role for TFP shocks in explaining inequality, while
the latter finds a larger role for investment specific technology shocks.
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Figure B.15. Variance decompositions: Output and consumption growth
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Note: Conditional variance decompositions at business cycle frequencies (6-32 quarter forecast horizon)
for the baseline and the estimated variants 1) sample 1983-2019, 2) risk aversion 2, 3) proportional union
profits, 4) fiscal policy reacts to inequality, 5) KPR preferences.
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B.4. Historical decomposition of inequality

Figure B.16 shows the historical decomposition of inequality for these two vari-
ants, KPR and risk aversion 2, that differ most from the baseline in the previous
section. Estimating the model with risk aversion 2 does not affect the implied
time path of the top 10 income and wealth shares much. KPR preferences, how-
ever, do change the estimated results. Wealth inequality is now rising throughout
the whole period, missing the U-shape. While income inequality is too high from
1970-2010 and too low afterwards such that the top 10 income share does not
display a significant trend over the whole sample.

a) Top 10 wealth share b) Top 10 income share

Note: Kalman smoother in comparison to the data for the top 10 wealth and income shares for the
baseline and the estimated variants risk aversion 2 and KPR. Y-axis: Percent deviation from mean.

Figure B.16. Historical decompositions: Inequality
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C. Further details on the solution technique

C.1. Deviations of functionals from steady state

Our solution technique, following Reiter (2009), is based on writing the se-
quential equilibrium as a non-linear difference equation in function space. For
this purpose, we write the marginal value functions, ∂Wt

∂b and ∂Wt
∂k , as a sum of

the stationary equilibrium function, W̄b/k, and time-t deviations thereof, Ŵb/k,t.
Since we work with Young’s 2010 formulation of off-grid policies as fair gambles
between grid points, we represent all functions as linear interpolants based on a
set of node values for the full tensor grid of b, k, h. However, we represent the
nodal values by their (3-dimensional) DCT coefficients, that is by the coefficients,
θp,q,r, of Chebychev polynomials, Tp/q/r(·), where we assume that the grid nodes
were transformed to the corresponding Chebychev nodes:

(C.1) Ŵb/k,t(bi, kj , hl) =
∑
p,q,r

θp,q,rWb/k,t
Tp(i)Tq(j)Tr(l).

The advantage of this formulation is that we can read off from the stationary
equilibrium solution, which sparse polynomial would have been a good approxi-
mation to the non-sparse solution by comparing the absolute values of θp,q,r. One
way to do this is to look at the function values in the stationary distribution and
fit the polynomials. If we had restricted the stationary equilibrium solution to
the sparse polynomial class that forces the small coefficients to zero, then the
solution would not have changed much. While we do not enforce this restriction
in calculating W̄b/k, we use it to select a baseline set of polynomials, i.e., the
coefficients θp,q,r in (C.1), to be perturbed when we linearize the system.

We add further perturbed coefficients based on how the multidimensional DCTs
of the marginal value functions change, when prices change. For this purpose we
calculate the discounted sum of expected changes in the marginal value functions
and perform a multidimensional DCT on this object. In the next subsection, we
discuss how this term is related to our ideal model reduction. This allows us to
maintain a sparser basis than by just basing the selection on the steady state
shape of the marginal value functions alone.

For the distribution function, we extend the approach of Bayer and Luetticke
(2020). Again following Young (2010), we write the distribution function in terms
of its histogram over the discrete nodes b, k, h. We then re-interpret this histogram
as the histogram of its copula (i.e., the joint-distribution of marginal probabili-
ties) by translating the axes from the b, k, h space to the space of the marginal
distributions F b

t , F
k
t , F

h
t . This allows us to split the joint distribution of b, k, h into

three separate objects: First, marginal distributions at time t, second the copula
in the stationary equilibrium C̄(F b

i,t, F
k
j,t, F

h
l,t), at the grid points of b, k, h with

indices i, j, l evaluated at these marginals and, third, deviations of the copula, Ĉt.
The advantage of this splitting the distribution into three objects is that we can
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work with different degrees of precision for the different objects. Again, we write
all functionals as linear interpolants over a set of nodal values. The nodal values
of C̄ are simply given by the stationary distribution. This means, we define the
node grid {F b

i , F
k
j , F

h
l } in line with the stationary marginal distributions over the

b, k, and h grid, respectively.
The deviation of the copula is again given by a linear interpolant of the pdf dĈ

over nodal values represented by a discrete-cosine transform that uses a subset of
the nodal grid of C̄:

(C.2) dĈt(F
b
i , F

k
j , F

h
l ) =

∑
p,q,r

θp,q,rC,t Tp(i)Tq(j)Tr(l).

A sparser grid for Ĉ implies that we need to perturb less coefficients. Working
with the multidimensional DCT-transformation on top, allows us to easily formu-
late the constraints that are posed by making sure that the combined copula C̄+Ĉ
remains a copula (fulfills the restrictions on partial integrals).33 This constraint
translates into parameter restrictions on θp,q,rC , where θp,q,rC = 0 for p = q = 1,
q = r = 1, or p = r = 1. This restriction ensures that

∫
dCt = 0 and reflects that∑

s Ts(m) = 0 for s > 1 where m is the Chebychev node index. The excluded
coefficients are the only tensor basis elements that have non-zero marginals. We
do not restrict the perturbed coefficients any further than this before running the
second-step model reduction.

C.2. Intuition for the possibility of a strong model reduction

The procedure above gives us the first-stage model reduction. It is based only
on objects calculated from the stationary equilibrium. While this renders solving
for a sequential equlibrium feasible, because the model becomes sufficiently small
in terms of the number of variables involved, this number is still large and would
thus yield long estimation times. Our second-stage model reduction leverages
the Bayesian setup, using prior knowledge about the dynamics to derive a factor
representation of the idiosyncratic model part. We find that it reduces the model
dramatically in the number of variables, making estimation feasible.

To gain some intuition for why such strong further model reduction is possible,
it is useful to draw insights from the sequence-space solution techniques (Auclert
et al., 2021). The key idea, which sequence-space techniques leverage, is that the
household’s decision problem depends only on the expected sequence of a small
set of “prices” Pt.34 We can use the envelop theorem, to calculate recursively the
response of the value functions (or derivatives thereof) to a change in an expected
future price Pt+h. Assuming that we wrote the problem such that prices do only

33Note, that different to Bayer and Luetticke (2020) we do not use the DCT on the copula for a
first-stage model reduction but instead work with a coarser set of nodes and linear interpolations.

34These are: level and progressivity of taxes, income risk, wage rate, real interest rate on liquid assets,
price of capital, return on capital, entrepreneurial profits, and union profits; see equation (36) for example.
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show up contemporaneously in the Bellman equation, we have for h > 0:

(C.3) ∂Wt

∂Pt+h
=

(
∂u

∂xt+1
+ βΓ

∂Wt+1

∂xt+1

)
∂xt+1

∂Pt+h
+ βΓ

∂Wt+1

∂Pt+h
,

where Γ is the transition matrix induced by stationary equilibrium policies and
income shocks (i.e., it includes the expectations operator). Here, xt+1 are the
endogenous idiosyncratic states. Importantly, the sum of the first two terms is
zero when the choice of xt+1 is not constrained because the borrowing constraint
does not bind. When it binds, however, ∂xt+1

∂Pt+h
= 0. This implies that the product

of the two terms is always zero and we can write ∂Wt
∂Pt+h

recursively as

(C.4) ∂Wt

∂Pt+h
= βhΓh ∂Wt

∂Pt︸ ︷︷ ︸
=:wP

.

The sequence-space method assumes that it is possible to approximate the
impact of a shock by a finite T period sequence of prices. Given this assumption,
we know that we can write the equilibrium sequence of prices as an impulse
response

(C.5) EtdPt+h = Φhϵt.

Stability requires that limh→∞Φh = 0 and if the sequence-space solution is exact
at horizon T , Φh ≈ 0 ∀h ≥ T .

If we now consider infinitesimally small shocks, we can write the deviations of
the value functions (in a total differential notation) as

dWt = Et

T∑
h=0

∂Wt

∂Pt+h
dPt+h = Et

T∑
h=0

(βΓ)hwPdPt+h

=

T∑
h=0

(βΓ)hwP

T∑
s=0

Φs+hϵt−s =

T∑
s=0

T−s∑
h=0

(βΓ)hwPΦs+h︸ ︷︷ ︸
=:Cs

ϵt−s.
(C.6)

The second equality uses the envelope result from (C.4). The third equality first
replaces the change in future prices by the impulse responses to contemporaneous
and past shocks according to (C.5). The last equality rearranges the sums using
the truncation of the impulse responses at the horizon T .

This implies a structure for the variance covariance matrix of deviations in the
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value functions:

EdWtdW′
t =

[
C0 · · · CT

] Σϵ · · · 0

0
. . . 0

0 · · · Σϵ


C

′
0
...

C ′
T

 =
T∑

s=0

CsΣϵC
′
s.(C.7)

Since the rank of a sum of matrices is bounded from above by the sum of the
ranks, and each summand in (C.7) has rank J , the variance covariance matrix of
the value functions has at most rank T × J , where J is the number of shocks.
This means that, under the assumption that a T -period approximation is good
enough (for a sequence-space solution), there are at most T × J factors in the
value functions.

This upper bound is, however, loose: The increments in the matrix sums
Cs shrink in s towards zero because of discounting in the planning problem,
lims→∞ βs = 0, and the stability of the price process, limh→∞Φh = 0. This effec-
tively means that Cs converges more quickly to a constant than Φs or βs alone
and the sum (C.7) can be approximated well using a smaller T than the actual
truncation horizon.

The special case where we can write the impulse-response of the prices in terms
of a VAR(1) in F prices (potentially in companion form) is particularly illustrative
for the strength of the model reduction. In that case, we obtain the impulse
responses as Φh = Φh and (C.6) and (C.7) can be further simplified to

dWt =
T∑

h=0

(βΓ)hwP

T∑
s=0

Φs+hϵt−s =
T∑

h=0

(βΓ)hwPΦ
h

︸ ︷︷ ︸
=:C̄

T∑
s=0

Φsϵt−s

EdWtdW′
t = C̄

[
T∑

s=0

ΦsΣϵΦ
′s
]
C̄ ′.

(C.8)

Since the inner term in brackets is of size F × F , the variance-covariance matrix
of the value functions has at most rank F . This explains why in practice the
reduction retains only few more factors than the number of prices and thus is far
below T × J .

Of course, in actually solving the model, we work with the marginal values
instead of the value functions, but the arguments for the number of factors in the
value functions carry over to their marginals. Applying the chain rule, we observe
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for h > 0:

∂

∂x

∂Wt

∂Pt+h
(b, k, h) =

∂

∂x
βE

∂Wt+1

∂Pt+h
(b′, k′, h′)

= βλ

[
∂b∗a
∂x

E
∂

∂b

∂Wt+1

∂Pt+h
(b∗a, k

∗, h′) +
∂k∗

∂x
E

∂

∂k

∂Wt+1

∂Pt+h
(b∗a, k

∗, h′)

]
+ β(1− λ)

[
∂b∗n
∂x

E
∂

∂b

∂Wt+1

∂Pt+h
(b∗n, k, h

′) +
∂k

∂x
E

∂

∂k

∂Wt+1

∂Pt+h
(b∗n, k, h

′)

],
(C.9)

where x is either b or k and ∂b′

∂x and ∂k′

∂x show how the policy functions change.

This, we can bring again in matrix notation in a recursive form

[
∂
∂b

∂Wt
∂Pt+h

∂
∂k

∂Wt
∂Pt+h

]
= β

(
λ

[
Dba,bΓa Dka,bΓa

Dba,kΓa Dka,kΓa

]
+ (1− λ)

[
Dbn,bΓn 0
Dbn,kΓn Γn

])
︸ ︷︷ ︸

=:Γ̃

[
∂
∂b

∂Wt+1

∂Pt+h
∂
∂k

∂Wt+1

∂Pt+h

]

= βΓ̃

[
∂
∂b

∂Wt+1

∂Pt+h
∂
∂k

∂Wt+1

∂Pt+h

]
=
(
βΓ̃
)h [ ∂

∂b
∂Wt
∂Pt

∂
∂k

∂Wt
∂Pt

] ,

(C.10)

where Dx,y are diagonal matrices that contain the derivatives of the policy func-
tion x to argument y at each point (b, k, h). The matrices Γa and Γn are the
transition matrices conditional on adjustment and non-adjustment, respectively.
The structure of (C.10) is the same as (C.4). This we can use to obtain an ap-
proximation to the analogue to C̄ to select additional DCT-coefficients for the
first stage reduction as discussed in the preceding subsection. Here, we calculate
ˆ̄C = (I−ϕβΓ̃)−1

[
∂
∂b

∂Wt
∂Pt

∂
∂k

∂Wt
∂Pt

]
where we assume an auxiliary ad-hoc AR(1) structure

for prices with an AR(1) coefficient ϕ = 0.999.

The general argument for reduction can be made for the variance covariance
matrix of the distribution, too. Here, the upper bound is 2 × T × J . As with
the value function, in each period shocks of up to T periods in the past affect the
households’ decision and thus the distribution directly. Additionally, because the
distribution itself is a state with memory that can be truncated at T periods, it
accumulates these direct effects of past shocks for T periods. As a result, only
shocks further in the past than t− 2T have no impact on the distribution.
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This can be expressed formally as follows:

dΘt =

T∑
h=0

Γh′dΓ′
t−hΘ̄ =

T∑
h=0

Γh′
[
∂Γ′Θ̄

∂P
dPt−h +

∂Γ′Θ̄

∂W+1
Et−hdWt−h+1

]

=

T∑
h=0

Γh′

∂Γ′Θ̄

∂P

T∑
j=0

Φjϵt−h−j +
∂Γ′Θ̄

∂W+1

T∑
j=0

Cj+1ϵt−h−j


=

T∑
h=0

T∑
j=0

Γh′
[
∂Γ′Θ̄

∂P
Φj +

∂Γ′Θ̄

∂W+1
Cj+1

]
ϵt−h−j

=
2T∑
s=0

s∑
h=0

Γh′
s−h∑
j=0

[
∂Γ′Θ̄

∂P
Φj +

∂Γ′Θ̄

∂W+1
Cj+1

]
︸ ︷︷ ︸

=:Ds

ϵt−s =
2T∑
s=0

Dsϵt−s,

(C.11)

where the first equation expresses changes in the distribution dΘt as changes
in the transition matrix, dΓt−h, h periods before t that translate into period t
changes through the repeated steady state transition matrix Γh. There are no
cross terms, where marginal changes in the transition matrix interact with past
marginal changes in the distribution because we look at a linearized solution.
The second equation replaces the changes in the transition matrix in t − h by
the partial direct effect of prices in that period ∂Γ′Θ̄

∂P dPt−h plus an indirect effect,
where ∂W+1 denotes the partial derivative with respect to the continuation value.
The next equation makes use of the impulse response representation of prices and
(C.6) to express changes in the continuation value as a function of past shocks.
The next equations simply reorder the sums. The variance-covariance matrix of
dΘt therefore has, along the lines of the argument made for (C.7) a rank below
2× T × J .

As before, the bound is loose, because of three reasons: first the stability of the
price process, second the convergence of Γh to a matrix with identical rows, Θ̄, and
third the fact that when summing over grid points

∑ ∂Γ′Θ̄
∂P =

∑ ∂Γ′Θ̄
∂W+1

= 0 because
the total mass of the distribution cannot change. However, as the discount factor
does not appear directly, we can expect slower convergence of Ds than Cs.

C.3. Intuition for local invariance of model reduction

What is important, in both (C.7) and (C.11) the parameters we estimate only
enter through their effect on price dynamics Φh. They affect neither the stationary
equilibrium transition matrix Γ, nor the response of the value functions to price
changes wP , and they also have no effect on how the optimal household policy
responds to price or continuation value changes, ∂Γ′Θ̄

∂Pt
and ∂Γ′Θ̄

∂W+1
.

While the price dynamics change in parameters, their changes are bounded.
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The priors, the model structure, and the data impose a restriction on how much
the price process (C.5) changes between two likelihood evaluations. This implies
that an ideal reduction basis, that is ultimately linked to the Cs and Ds of the
preceding subsection, obtained under one set of parameters can be expected to
remain a good basis in their vicinity. This is indeed what we observe in our
application and the quality of the reduction basis can be verified ex post along
the lines described in the main text.

C.4. Direct IRF comparison across solution techniques

Figures C.17 to C.20 compare the impulse responses of the observables used in
the estimation of the HANK model obtained from our solution method to those
obtained from a sequence-space method assuming a 300 period transition. The
terminal values are assumed to be given by the state-space solution instead of
the stationary equilibrium. The figures are organized by observable variables and
show the responses to the various shocks in one figure. Figures C.21 to C.26
repeat this exercise for the HANK-X estimates.

The figures show that the differences in the IRFs are almost zero. What the IRFs
also show is that the TFP shock leads to a persistent change in the capital stock
(which can be seen in the persistent increase of employment). We also compared
the sequence space solution with a 300 period transition to itself using the state-
space solution as terminal outcome and the stationary equilibrium. Given the
persistent change in the capital stock after a TFP shock, a 300 periods transition
is not a good approximation and we find that the approximation error between
the two solutions is for persistent variables more than one order of magnitude
larger than between sequence and state-space solution. Results are available
upon request.
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.17. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.18. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.19. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.20. Comparison of IRFs across solution methods (HANK model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.21. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.22. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.23. Comparison of IRFs across solution methods (HANK-X model)



90

Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.24. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.25. Comparison of IRFs across solution methods (HANK-X model)
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Note: The figure shows the impulse response to the various shocks in the HANK-X model, comparing a
sequence-space solution (red dashed line) to our state-space solution (blue solid).

Figure C.26. Comparison of IRFs across solution methods (HANK-X model)


