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1 Introduction

A new generation of monetary business cycle models has become popular, featuring hetero-
geneous agents and incomplete markets (known as HANK models). This new class of models
implies new transmission channels of monetary1 and fiscal2 policy, as well as new sources
of business cycle fluctuations working through household portfolio decisions.3 Much of this
literature so far has focused on specific channels of transmission, shocks, or puzzles. In con-
trast, the present paper takes a more encompassing approach and shows how a discrete-time
HANK model can be estimated using its state-space representation via Bayesian methods.

Following Reiter (2009), we linearize the model, but then leverage two aspects for the
estimation: First, we exploit the fact that the economy can be written in a modular way,
where the elements reflecting household heterogeneity are free of the estimated parameters.
This implies that re-linearizing the HANK model after a parameter change is as little nu-
merical burdensome as it is for the representative agent model (RANK). The modularity
also allows us to provide a toolbox for the estimation of HANK models where the aggregate
part can be readily customized. Second, we develop a novel model reduction approach that
naturally emerges from the Bayesian setting and speeds up solving the linearized economy
drastically. We show that speed and precision of the proposed solution method is comparable
to sequence-space approaches suggested by Auclert et al. (2021b) and Boppart et al. (2018).

Concretely, we extend the method of Bayer and Luetticke (2020) with a more flexible and
better-informed treatment of the value and distribution functions. This yields an arbitrarily
precise approximation of the full model using information from the stationary equilibrium.
Our novel Bayesian reduction technique then leverages the fact that we have prior informa-
tion for model reduction, which allows us to go beyond what the literature has suggested.
Specifically, we solve the model once under the prior parameterization and use this solution
to derive a factor representation of the heterogeneous-agent part of the model. We show that
this factor representation can be used for a very strong model reduction even when parame-
ters change. It reduces the system of difference equations from originally more than 660,000
variables and equations to 3,500 in a first step based on the model’s stationary equilibrium
and finally, using the factor representation of the model’s dynamics under the prior, to under
500. Key here is the same insight that renders sequence-space methods feasible: Households’
decisions are driven by a small set of prices and their limited and tractable dynamics.

1Auclert (2019) analyzes the redistributive effects of monetary policy, Kaplan et al. (2018) show the
importance of indirect income effects, and Luetticke (2021) analyzes the portfolio rebalancing channel of
monetary policy. McKay et al. (2016) study the effectiveness of forward guidance.

2Auclert et al. (2018), Bayer et al. (2022), and Hagedorn et al. (2019) discuss fiscal multipliers, McKay
and Reis (2016, 2021) discuss the role of automatic stabilizers.

3Bayer et al. (2019) quantify the importance of shocks to idiosyncratic income risk, and Guerrieri and
Lorenzoni (2017) look at the effects of shocks to the borrowing limit.
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As an application, we study a business cycle model in the spirit of Smets and Wouters
(2007), fusing this with the New-Keynesian incomplete markets model of Bayer et al. (2019).
This fused model then features capacity utilization, a frictional labor market with sticky
wages, and progressive taxation, as well as the battery of shocks that drive business cycle
fluctuations in estimated New-Keynesian models: aggregate and investment-specific pro-
ductivity shocks, wage- and price-markup shocks, monetary- and fiscal-policy shocks, risk-
premium shocks. To this battery of standard RANK model business cycle shocks, we add two
additional incomplete-market-specific ones: shocks to the progressivity of taxes and shocks to
idiosyncratic productivity risk. With this model at hand, we tackle three questions: First, to
what extent does the inclusion of incomplete markets change our view of US business cycles?
Second, can the model also capture US inequality dynamics? Third, if so, which business
cycle shocks and policies are important drivers?

In our model, precautionary motives play an important role for consumption-savings deci-
sions. Since individual income is subject to idiosyncratic risk that cannot be directly insured
and borrowing is constrained, households structure their savings decisions and portfolio allo-
cations to optimally self-insure and achieve consumption smoothing. In particular, we assume
that households can either hold liquid nominal bonds or invest in illiquid physical capital.
Capital is illiquid because its market is segmented and households participate only from time
to time. This portfolio-choice component, which gives rise to an endogenous liquidity pre-
mium, and the presence of occasional hand-to-mouth consumers lead the HANK model to
have rich distributional dynamics in response to aggregate shocks.

To answer the first question whether incomplete markets change our view of US business
cycles, we estimate the HANK model using the same set of aggregate shocks and observables
as in Smets and Wouters (2007), covering the time period of 1954 to 2019, and compare it
to the representative household analogue (RANK). We find that both models tell a similar
story about the business cycle, but there are some differences because the incomplete markets
structure intimately links aggregate consumption to the distributional consequences of shocks.
In particular, technology shocks – at the expense of markup shocks – become more important
for consumption growth in HANK because a sizable fraction of households has few assets and
a high marginal propensity to consume out of wage income.

These distributional consequences are also important for our second question. Here, we
find that the HANK model can simultaneously account for the dynamics of the US business
cycle and inequality between 1954 and 2019. Our model translates the business cycle shocks
estimated from aggregate data into persistent movements in wealth and income inequality
that are broadly consistent with the U-shaped evolution of the shares of wealth and income
held by the top 10 percent of US households.4

4We focus on the top 10 shares taken from the World Inequality Database because these measures are
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Based on this finding, we then answer our third question, what drives US inequality,
by re-estimating the model. We now include the top 10 shares as observables, and allow
two additional, and also observed, variables to directly affect the distribution of income:
the progressivity of taxes and idiosyncratic income risk. We find that income risk partly
replaces risk-premium shocks in explaining aggregate consumption growth. Shocks to the
progressivity of taxes have some importance for wealth inequality as they persistently change
the net income distribution and self-insurance incentives.

These findings are also reflected in historical decompositions of US inequality. We find
that wealth inequality—measured by the share held by the top 10 percent—is largely driven
by two factors: shocks to investment technology and shocks to price markups. Shocks to
technology have strong effects on asset prices and returns and through them persistently
affect the wealth distribution (as empirically shown in Kuhn et al., 2020). Key for this are
portfolio differences between the wealthy and the poor. The former hold their wealth in
liquid low return assets, the latter in illiquid form. Price markup shocks work through the
income distribution and we estimate that the persistent increase in income inequality since
the 1980s is linked to higher price markups. However, there is some tension between the high
volatility of markups in the model and the low cyclical volatility of the top income share.

To our knowledge, our paper is one of the first to provide an encompassing estimation of
shocks and frictions using a HANK model with portfolio choice. Most of the literature on
monetary heterogeneous-agent models has used a calibration approach.5 Auclert et al. (2020),
Hagedorn et al. (2018), and Bayer et al. (2022) go beyond calibration but use a limited in-
formation approach based on impulse response function matching. Auclert et al. (2021b), go
beyond such limited information approaches and propose a technique for estimating hetero-
geneous agent models that solves the model in sequence space and uses the resulting MA-∞
representation for estimation. In contrast, our proposed technique, building on a state-space
representation, connects more directly to established ways of estimating dynamic stochastic
general equilibrium models and the vast toolset that has developed around it: for example,
obtaining variance decompositions at business cycle frequencies (Uhlig, 2001), using different
sampling and filtering techniques (Acharya et al., 2021; Herbst and Schorfheide, 2014, 2015),
or dealing with mixed-frequency data.6

available from the 1950s onward and are most similar across alternative data sources such as the Survey of
Consumer Finances; see Kopczuk (2015) and Bricker et al. (2016).

5See, for example, Auclert et al. (2018); Ahn et al. (2018); Bayer et al. (2019); Broer et al. (2019); Challe
and Ragot (2015); Den Haan et al. (2017); Ferriere and Navarro (2018); Gornemann et al. (2012); Guerrieri
and Lorenzoni (2017); McKay et al. (2016); McKay and Reis (2016); Ravn and Sterk (2017); Sterk and
Tenreyro (2018); Wong (2019).

6Of course, sequence-space solutions can be translated into a quasi state-space representation and Auclert
et al. (2021b) show how this can be done. The impulse-response representation, however, remains the natural
form of a sequence-space solution.
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The inclusion of distributional data in the estimation is novel and potentially informa-
tive for identifying the sources of business cycle variations. Our paper is related to Chang
et al. (2021) in the sense that it estimates a state-space model of both distributional (cross-
sectional) data and aggregates. Chang et al. (2021) find that, in an SVAR sense, shocks
to the cross-sectional distribution of income only have a mild impact on aggregate time se-
ries. Our finding of structural estimates being relatively robust to the inclusion or exclusion
of cross-sectional information resembles their results.7 The estimated muted importance
of cross-sectional shocks is also in line with the finding of Berger et al. (2022) who use a
business-cycle accounting approach. Bilbiie et al. (2022) estimate a tractable heterogeneous
agent model in state-space form (two types of agents with stochastic transitions between
types) using a full-information approach and data on the cross-sectional dispersion of labor
earnings and income. They find amplification of aggregate shocks with heterogeneity.

Our findings add some insights to the literature on the drivers of inequality.8 Kaymak
and Poschke (2016) and Hubmer et al. (2020) use quantitative models to study permanent
changes in the US tax and transfer system and the variance of income. In terms of methods,
these papers solve for steady-state transitions of calibrated models, while we estimate our
model on US macro and micro time-series data. They find that tax and transfer changes
can explain a significant part of the recent increase in wealth inequality. Ours is the first
paper to quantify the distributional consequences of all standard business cycle shocks and
estimate their importance in explaining US inequality. Alongside business cycle shocks, our
model features changes in the US tax system and income risk and allows us to compare their
relative importance for the evolution of income and wealth inequality. We find business cycle
shocks, through their effect on asset prices and returns, to be important for wealth inequality.

The remainder of this paper is organized as follows: Section 2 describes our model econ-
omy, its sources of fluctuations and frictions. Section 3 provides details on the numerical
solution method and estimation technique. Section 4 presents our model variants, the pa-
rameters that we calibrate to match steady-state targets, prior and posterior distributions
for the remaining parameters that we estimate, and an assessment of our solution approach
based on the estimated posterior distribution. It also gives an overview of the data we em-
ploy in our estimation. Section 5 discusses the estimated shocks and frictions driving the US
business cycle and inequality dynamics. Section 6 concludes. An Appendix follows.

7Our approach is different to and simpler than the method suggested by Liu and Plagborg-Møller (2022),
which includes full cross-sectional information in the estimation of a heterogeneous-agent DSGE model. By
contrast, we only use the model to fit certain generalized cross-sectional moments.

8There is a growing literature on inequality dynamics: on the theory side, e.g., Gabaix et al. (2016) and
on the empirical side, e.g., Heathcote et al. (2010), Piketty and Saez (2003) or Saez and Zucman (2016).
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2 Model

Wemodel an economy composed of a firm sector, a household sector, and a government sector.
Of these three sectors only the household sector deviates from the standard New Keynesian
DSGE model structure as in Smets and Wouters (2007) or Christiano et al. (2005). In detail,
the firm sector comprises (a) final goods producers who bundle the intermediate goods;
(b) intermediate goods producers who rent out labor services and capital from perfectly
competitive markets, but face monopolistic competition in the goods market as they produce
differentiated goods and set prices; (c) producers of capital goods that turn final goods into
capital subject to adjustment costs; (d) labor packers that produce labor services combining
differentiated labor from unions that differentiate raw labor rented out from households.
Price setting for the intermediate goods as well as wage setting by unions is subject to a
pricing friction à la Calvo (1983).

Households earn income from supplying (raw) labor and capital and from owning the firm
sector, absorbing all its rents that stem from the market power of unions and intermediate
goods producers, and decreasing returns to scale in capital goods production. They face
idiosyncratic income risk against which they can self-insure by trading liquid and illiquid
assets giving rise to endogenous heterogeneity. We also consider a representative-agent variant
with full insurance.

The government sector runs both a fiscal authority and a monetary authority. The fiscal
authority levies progressive taxes on labor incomes and profits, issues government bonds, and
adjusts expenditures to stabilize debt in the long run and aggregate demand in the short run.
The monetary authority sets the nominal interest rate on government bonds according to a
Taylor rule.

2.1 Firm sector

Since the firm sector involves dynamic decisions, we need to make an assumption about the
discount factor used in these decisions. With household heterogeneity, stochastic discount
factors across households might differ. For this reason, we make the simplifying assumption
that the firm sector is run by managers that are risk neutral, have no asset market access,
but have the same time preferences as households.9 Managers are a mass-zero group in the
economy so that their consumption does not show up in any resource constraint and as a
result all profits of the firm sector go to households.

9Since we solve the model by a first-order perturbation in aggregate shocks, fluctuations in stochastic
discount factors are irrelevant.
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2.1.1 Final goods producers

Final goods producers bundle varieties j of differentiated goods according to the Dixit-Stiglitz
aggregator

Yt =

(∫
y
ηt−1
ηt

jt dj

) ηt
ηt−1

, (1)

with elasticity of substitution ηt. Each of these differentiated goods is offered at price pjt, so

that the aggregate price level is given by Pt =
(∫

p1−ηt
jt dj

) 1
1−ηt and the demand for each of

the varieties is

yjt =

(
pjt
Pt

)−ηt
Yt . (2)

2.1.2 Intermediate goods producers

Intermediate goods are produced with a constant returns to scale production function

Yjt = ZtN
α
jt(ujtKjt)

(1−α), (3)

where α is the labor share in production, Zt is total factor productivity that follows an
autoregressive process in logs, Njt is the labor bundle firm j hires at time t, and ujtKjt are
capital services taking into account utilization ujt, i.e., the intensity with which the capital
stock Kjt is used. An intensity higher than normal results in increased depreciation of capital
according to δ (ujt) = δ0 + δ1 (ujt − 1) + δ2/2 (ujt − 1)2, which, assuming δ1, δ2 > 0, is an
increasing and convex function of utilization. Without loss of generality, capital utilization
in steady state is normalized to 1, so that δ0 denotes the steady-state depreciation rate of
capital goods.

Given demand, the producer minimizes costs, wFt Nt − [rt + qtδ(ujt)]Kt, where rt and qt
are the rental rate and the (producer) price of capital goods, respectively, and wFt is the
real wage the firm faces. Factor markets are perfectly competitive. Hence, the first-order
conditions for labor and effective capital read

wFt = αmcjtZt

(
ujtKjt

Njt

)1−α

(4)

and rt + qtδ(ujt) = ujt(1− α)mcjtZt

(
Njt

ujtKjt

)α
, (5)

where mcjt is the marginal cost of firm j. The optimal utilization is given by

qt [δ1 + δ2(ujt − 1)] = (1− α)mcjtZt

(
Njt

ujtKjt

)α
. (6)
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Combining the three first-order conditions, it is easy to see that given the constant returns
to scale production function, marginal costs are constant across producers mcjt = mct.

We assume that intermediate goods producers face price adjustment frictions à la Calvo
(1983); and the firms’ managers maximize the present value of real profits subject to this
price adjustment friction and the demand curve (2). They hence maximize

E0

∞∑
t=0

βtλtY (1− τLt )Y
1−τPt
t

{(
pjtπ̄

t
Y

Pt
−mct

)(
pjtπ̄

t

Pt

)−ηt}1−τPt

, (7)

with a time-constant discount factor β. Prices are indexed to the steady-state inflation rate π̄
and can be discretionally adjusted price with probability 1− λY . The parameters τPt and τLt
characterize the progressivity and level of the tax schedule, which we discuss in more detail,
when describing the household sector.

The corresponding first-order condition for price setting implies a Phillips curve

log
(πt
π̄

)
= βEt log

(πt+1

π̄

)
+ κY

(
mct − 1

µYt

)
, (8)

where we dropped all terms irrelevant for a first-order approximation and defined κY =
(1−λY )(1−λY β)

λY
. Here, πt is the gross inflation rate of final goods, πt := Pt

Pt−1
, mct := MCt

Pt
is the

real marginal costs, and µYt = ηt
ηt−1

is the target markup. This target fluctuates in response
to markup shocks, εµYt , and follows a log AR(1) process.

2.1.3 Capital goods producers

Capital goods producers take the relative price of capital goods, qt, as given in deciding about
their output, i.e., they maximize

E0

∞∑
t=0

βtIt

{
Ψtqt

[
1− φ

2

(
log

It
It−1

)2
]
− 1

}
, (9)

where φ controls the strength of the quadratic investment adjustment costs and Ψt governs
the marginal efficiency of investment à la Justiniano et al. (2011), which follows an AR(1)
process in logs and is subject to shocks εΨt .10

10This shock has to be distinguished from a shock to the relative price of investment, which has been shown
in the literature (Justiniano et al., 2011; Schmitt-Grohé and Uribe, 2012) to not be an important driver of
business cycles as soon as one includes the relative price of investment as an observable. We therefore focus
on the MEI shock.

7



Optimality of the capital goods production requires (again dropping all terms irrelevant
up to first order)

Ψtqt

[
1− φ log

It
It−1

]
= 1− βEt

[
Ψt+1qt+1φ log

(
It+1

It

)]
, (10)

and each capital goods producer will adjust its production until (10) is fulfilled.
Since all capital goods producers are symmetric, we obtain as the law of motion for

aggregate capital:

Kt − (1− δ(ut))Kt−1 = Ψt

[
1− φ

2

(
log

It
It−1

)2
]
It . (11)

The functional form assumption implies that investment adjustment costs are minimized and
equal to 0 in the steady state.

2.1.4 Labor packers and unions

Workers sell their labor services to a mass-one continuum of unions indexed by j, each of
whom offers a different variety of labor to labor packers who then provide labor services to
intermediate goods producers. Labor packers produce final labor services according to the
production function

Nt =

(∫
n̂
ζt−1
ζt

jt dj

) ζt
ζt−1

, (12)

out of labor varieties n̂jt with elasticity of substitution ζt. Cost minimization by labor packers
implies that each variety of labor, each union j, faces a downward-sloping demand curve

n̂jt =

(
Wjt

W F
t

)−ζt
Nt , (13)

where Wjt is the nominal wage set by union j and W F
t is the nominal wage at which labor

packers sell labor services to intermediate goods producers.
Since unions have market power, they pay the households a wage lower than the price

at which they sell labor to labor packers. Given the nominal wage Wt at which they buy
labor from households and given the nominal wage index W F

t , unions seek to maximize their
discounted stream of profits. However, they face a Calvo (1983)-type adjustment friction with
indexation, where λw is the probability to keep wages constant. They therefore maximize

E0

∞∑
t=0

βtλtw
W F
t

Pt
Nt

{(
Wjtπ̄

t
W

W F
t

− Wt

W F
t

)(
Wjtπ̄

t
W

W F
t

)−ζt}
, (14)
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by setting Wjt in period t and keeping it constant except for indexation to π̄W , the steady-
state wage inflation rate.

Since all unions are symmetric, we focus on a symmetric equilibrium and obtain the
linearized wage Phillips curve from the corresponding first-order condition as follows, leaving
out all terms irrelevant at a first-order approximation around the stationary equilibrium

log
(
πWt
π̄W

)
= βEt log

(
πWt+1

π̄W

)
+ κw

(
mcwt − 1

µWt

)
, (15)

with πWt :=
WF
t

WF
t−1

=
wFt
wFt−1

πYt being wage inflation, wt and wFt being the respective real wages

for households and firms, mcwt = wt
wFt

is the actual and 1
µWt

= ζt−1
ζt

being the target mark-down
of wages the unions pay to households, Wt, relative to the wages charged to firms, W F

t and
κw = (1−λw)(1−λwβ)

λw
. This target fluctuates in response to markup shocks, εµWt , and follows a

log AR(1) process.

2.2 Households

There is a continuum of ex-ante identical households of measure one, indexed by i. Households
are infinitely lived, have time-separable preferences with time-discount factor β, and derive
felicity from consumption cit and leisure. They obtain income from supplying labor, nit,
from renting out capital, kit, and from earning interest on bonds, bit. What is more, they
receive profits of firms, ΠY

t = (1 − mct)Yt, and unions, ΠU
t = (wFt − wt)Nt. Households

pay taxes on labor and profit income. Our baseline model features household heterogeneity.
Households differ in their productivity and in whether the obtain profit income. They face
incomplete markets in this baseline, and capital as an asset is illiquid while bonds are liquid.
For comparison, we also consider a representative-agent variant.

2.2.1 Preferences

With respect to leisure and consumption, households have Greenwood et al. (1988) (GHH)
preferences and maximize the discounted sum of felicity

E0 max
{cit,nit}

∞∑
t=0

βtu [cit −G(hit, nit)] . (16)

The maximization is subject to the budget constraints described further below. The felicity
function u exhibits a constant relative risk aversion (CRRA) with risk aversion parameter ξ,

u(xit) =
x1−ξ
it − 1

1− ξ
, (17)
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where xit = cit − G(hit, nit) is household i’s composite demand for goods consumption cit

and leisure and G measures the disutility from work. While nit denotes a household’s labor
supply, hit is the household’s labor productivity.11

Assuming a (progressive) income-tax schedule (which we borrow from Benabou, 2002;
Heathcote et al., 2017), a household’s net labor income, yit, is given by

yit = (1− τLt )(wthitnit)
1−τPt , (18)

where wt is the aggregate real wage rate and τLt and τPt determine the level and progressivity
of the tax code. Given net labor income, the first-order condition for labor supply is

∂G(hit, nit)

∂nit
= (1− τPt )(1− τLt )(wthit)

1−τPt n
−τPt
it = (1− τPt )

yit
nit

. (19)

Assuming that G has a constant elasticity w.r.t. n, ∂G(hit,nit)
∂nit

= (1 + γ)G(hit,nit)
nit

with γ > 0,
we can simplify the expression for the composite consumption good, xit, making use of this
first-order condition (19), and substitute G(hit, nit) out of the individual planning problem

xit = cit −G(hit, nit) = cit −
1− τPt
1 + γ

yit . (20)

When the Frisch elasticity of labor supply is constant and the tax schedule has the form (18),
the disutility of labor is always a fraction of labor income and constant across households.
Therefore, in both the household’s budget constraint and felicity function, only after-tax
income enters and neither hours worked nor productivity appear separately.

11 The assumption of GHH preferences is mainly motivated by the fact that many estimated DSGE models
of business cycles find small aggregate wealth effects in the labor supply; see, e.g., Schmitt-Grohé and Uribe
(2012); Born and Pfeifer (2014). Unfortunately, it is not feasible to estimate the flexible form of preference
of Jaimovich and Rebelo (2009), which also encompasses King et al. (1988) (KPR) preferences. This would
require solving the stationary equilibrium in every likelihood evaluation, which is substantially more time
consuming than solving for the dynamics around this equilibrium. However, we estimate a version with KPR
preferences; see Section 5.3 and also Appendix B. According to the marginal data density, the data clearly
prefer the GHH specification over the KPR specification. What is more, the KPR version of the HANK model
has more difficulty matching business cycle and inequality dynamics simultaneously. The GHH assumption
has been criticized by Auclert et al. (2021a) on the basis of producing “too high” multipliers. In a companion
paper (Bayer et al., 2022), we show that our model produces multipliers of reasonable size both in the short
and in the long run. The reason for this lies in the combination of model elements only briefly discussed
or even absent in the stylized Auclert et al. (2021a) economy: sticky wages, distortionary taxes, capacity
utilization, and a Taylor rule. Capacity utilization allows for output adjustment without adjusting hours;
additional wage stickiness translates increasing labor demand into higher wage markups instead of hours
and consumption; distortionary taxes absorb an additional fraction of income; and the Taylor rule translates
the fiscal shock into to a real interest rate increase. The back-of-the envelope calculation of the multiplier
based on formula (15) in Auclert et al. (2021a), counter-factually assuming fixed real rates and ignoring
capacity utilization, would be: (1− (1− τ)(η − 1)/η(ζ − 1)/ζ)

−1 ≈ 2.5. The true multiplier in the model
with capacity utilization and interest rate response is, in line with the data, much smaller.
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Aggregate effective labor supply depends on the distribution of hit and tax progressivity.
Without loss of generality, we assume G(hit, nit) = h1−τ̄P

it
n1+γ
it

1+γ
, where τ̄P is the stationary

equilibrium level of progressivity of the tax code. This functional form simplifies the house-
hold problem as hit drops out from the first-order condition as long as tax progressivity is
constant. Then, all households supply the same number of hours nit = N(wt). Total effective
labor input,

∫
nithitdi, is then hence also equal to N(wt) because we normalize

∫
hitdi = 1.

Individual after tax labor income is then

yit = (1− τLt )(wthitnit)
1−τ̄P = (1− τLt )

1+γ

γ+τ̄P (1− τ̄P )
1−τ̄P

γ+τ̄P w
1+γ

γ+τ̄P
(1−τ̄P )

t h1−τ̄P
it . (21)

In an extension, we allow for tax progressivity to vary over time because it can directly affect
the distribution of net incomes and thereby wealth.12

2.2.2 Baseline: heterogeneous households and incomplete markets

In our baseline, the household sector is subdivided into two types of agents: workers and
entrepreneurs. The transition between both types is stochastic. On top, workers face idiosyn-
cratic labor productivity risk. Both, workers and entrepreneurs, rent out physical capital,
but only workers supply labor. Entrepreneurs do not work, but earn all pure rents in our
economy except for the rents of unions which are equally distributed across workers. All

12In this case, the parameter τPt governing the progressivity of the tax schedule evolves according to

τPt
τ̄P

=

(
τPt−1

τ̄P

)ρP
εPt , (33a)

where εPt are shocks to tax progressivity. When tax progressivity does not coincide with its stationary
equilibrium value, individual hours worked differ across agents and are given by

nit =
[
(1− τPt )(1− τLt )

] 1

γ+τPt h

τ̄P−τPt
γ+τPt
it w

1−τPt
γ+τPt
t , (19a)

such that aggregate effective hours are given by

Nt =

∫
nithit =

[
(1− τPt )(1− τLt )

] 1

γ+τPt w

1−τPt
γ+τPt
t

∫
h

γ+τ̄P

γ+τPt
it︸ ︷︷ ︸

:=Ht

. (19b)

Here Ht measures how the tax progressivity influences the (hours-weighted) average labor productivity.
Scaling of the disutility of labor by h1−τ̄P

it is thus a normalization of Ht to one in the stationary equilibrium.
Household after-tax labor income, plugging in the optimal supply of hours, is then

yit = (1− τLt )(wthitnit)
1−τPt = (1− τLt )

1+γ

γ+τPt (1− τPt )
1−τPt
γ+τPt w

1+γ

γ+τPt
(1−τPt )

t h

γ+τ̄P

γ+τPt
(1−τPt )

it . (22)
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households self-insure against the income risks they face by saving in a liquid nominal asset
(bonds) and a less liquid asset (capital). Trading these illiquid assets is subject to random
participation in the capital market.

We assume that productivity evolves according to a log-AR(1) process and a fixed prob-
ability of transition between the worker and the entrepreneur state:

h̃it =


exp

(
ρh log h̃it−1 + εhit

)
with probability 1− ζ if hit−1 6= 0,

1 with probability ι if hit−1 = 0,

0 else,

(23)

with individual productivity hit = h̃it∫
h̃itdi

such that h̃it is scaled by its cross-sectional average,∫
h̃itdi, to make sure that average worker productivity is constant. The shocks εhit to produc-

tivity are normally distributed with variance σ̄2
h.13 With probability ζ households become

entrepreneurs (h = 0). With probability ι an entrepreneur returns to the labor force with
median productivity. Besides their labor income, workers receive a share in union rents, ΠU

t ,
which are distributed lump sum, leading to labor-income compression. For tractability, we
assume union profits to be taxed at a fixed rate independent of the recipient’s labor income.

For the distribution of firm profits (aside union profits), we assume that they primarily
go to entrepreneurs. However, entrepreneurs as a group can sell claims to a fraction ωΠ of
their profits as shares. These claims have stochastic maturity and are liquid. This stochastic
maturity ensure finite prices for profit claims even at zero interest rates of liquid assets. Each
period ιΠ claims mature. When a claim matures, it loses value and is replaced by a new
issuance by the entrepreneurs. We assume a unit mass of profit shares which then trade at
price qΠ

t . The entrepreneurs then receive in each period the sum of the profits they have not
sold plus the value of the new shares they sell: ΠE

t = (1− ωΠ)ΠF
t + ιΠqΠ

t .14

This modeling strategy allows us to match the income and wealth distribution following
the idea by Castaneda et al. (1998) while limiting the impact of profits on investment behavior
and asset markets.

13In our baseline, we treat the variance as time fixed. We consider an extension where income risk follows
a log-AR(1) process with endogenous feedback to aggregate output growth:

σ2
h,t = σ̄2

h exp ŝt,

ŝt+1 = ρsŝt + ΣY
Yt+1

Yt
+ εσt ,

(23a)

i.e., at time t households observe a change in the variance of shocks that drive the next period’s productivity.
14Boar and Midrigan (2019) use a similar structure, where entrepreneurs retain a fraction of firm profits

and thus the size of markups has an impact on inequality in the economy.
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Given incomes, households optimize intertemporally subject to their budget constraint

cit + bit+1 + qtkit+1 = bit
Rit
πt

+ (qt + rt)kit + yit (24)

+ Ihit 6=0(1− τt)ΠU
t + Ihit=0(1− τLt )(ΠE

t )1−τ̄P , kit+1 ≥ 0, bit+1 ≥ B ,

where ΠU
t is union profits taxed at the average tax rate τt, ΠE

t is profit payouts to en-
trepreneurs, bit is real liquid assets, kit is the amount of illiquid assets, qt is the price of these
assets, rt is their dividend, πt = Pt

Pt−1
is realized inflation, and Rit is the nominal interest rate

on liquid assets, which depends on whether the household is a borrower or lender, the effi-
ciency of intermediation, the returns on profit shares, and the central bank’s interest rate Rb

t ,
which is set one period before. All households that do not participate in the capital market
(kit+1 = kit) still obtain dividends and can adjust their liquid asset holdings. Depreciated
capital has to be replaced for maintenance, such that the dividend, rt, is the net return on
capital. Holdings of bonds have to be above an exogenous debt limit B, and holdings of
capital have to be non-negative.

Substituting the expression cit = xit + 1−τ̄P
1+γ

yit for consumption, we obtain the budget
constraint for the composite leisure-consumption good,

xit + bit+1 + qtkit+1 = bit
Rit
πt

+ (qt + rt)kit + τ̄P+γ
1+γ

yit (25)

+ Ihit 6=0(1− τt)ΠU
t + Ihit=0(1− τLt )(ΠE

t )1−τ̄P , kit+1 ≥ 0, bit+1 ≥ B .

Households make their savings and portfolio choice between liquid bonds and illiquid
capital in light of a capital market friction that renders capital illiquid because participation
in the capital market is random and i.i.d. in the sense that only a fraction, λ, of households
are selected to be able to adjust their capital holdings in a given period. Ex-post returns Rit

on the liquid asset are given by the average return of the liquid asset portfolio, composed of
government bonds Bt and profit shares with a value of qΠ

t , i.e.,

Rit =

At
RbtBt+πt[(1−ιΠ)qΠ

t +ωΠΠFt ]

Bt+qΠ
t−1

if bit ≥ 0

At
RbtBt+πt[(1−ιΠ)qΠ

t +ωΠΠFt ]

Bt+qΠ
t−1

+R if bit < 0
. (26)

The shifter At reflects a “risk-premium shock” (as in, for example, Smets and Wouters, 2007)
and is technically modeled as an intermediation efficiency here. The first part of the sum
in the numerator is the interest payments on government bonds issued and bought in the
previous period, the second part is the returns from selling the non-matured profit claims
and the share of profits that is paid out to shareholders. The denominator is the sum of the
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value of bonds and profit shares bought in the previous period.
Since a household’s saving decision—(b′a, k

′) for the case of adjustment and (b′n, k) for non-
adjustment—will be some non-linear function of that household’s wealth and productivity,
inflation and all other prices will be functions of the joint distribution, Θt, of (b, k, h) in t. This
makes Θ a state variable of the household’s planning problem and this distribution evolves
as a result of the economy’s reaction to aggregate shocks. For simplicity, we summarize
all effects of aggregate state variables, including the distribution of wealth and income, by
writing the dynamic planning problem with time-dependent continuation values.

This leaves us with three functions that characterize the household’s problem: value
function V a for the case where the household adjusts its capital holdings, the function V n

for the case in which it does not adjust, and the expected continuation value, W, over both,

V a
t (b, k, h) = max

b′a,k
′
u[x(b, b′a, k, k

′, h)] + βEtWt+1(b′a, k
′, h′) ,

V n
t (b, k, h) = max

b′n
u[x(b, b′n, k, k, h)] + βEtWt+1(b′n, k, h

′) , (27)

Wt+1(b′, k′, h′) =λV a
t+1(b′, k′, h′) + (1− λ)V n

t+1(b′, k′, h′) .

Expectations about the continuation value are taken with respect to all stochastic processes
conditional on the current states. Maximization is subject to the corresponding budget
constraint. The distribution Θt then evolves according to

Θt+1(b′, k′, h′) = λ

∫
b′=b∗a,t(b,k,h),k′=k∗t (b,k,h)

Φ(h, h′)dΘt(b, k, h) (28)

+ (1− λ)

∫
b′=b∗n,t(b,k,h),k′=k

Φ(h, h′)dΘt(b, k, h) ,

where Φ(·) is the transition probability for h and b∗a/n,t and k
∗
t are the time-t optimal policies.

Importantly, following Reiter (2009), one can view the discretized version of (27) and (28)
as a set of equations that pins down the dynamics of the value functions and optimal policy
for each b × k × h node as well as the transition of the mass of households at each of the
nodes.

2.2.3 Model variant with a representative household and complete markets

With complete markets, when all households are homogeneous with equal and constant labor
productivity hi = 1 and equally obtain all profit incomes, the planning problem is described
by the consumption Euler equation for bonds instead of the above mentioned set of equations.
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For an optimal consumption-savings policy,

uc(xt) = βEt
AtR

b
t

πt+1

uc(xt+1) (29)

needs to hold, replacing (27). Again, xt = ct − G(nt) is the composite consumption-leisure
good.

The law of motion for the distribution (28) is replaced by the wealth accumulation equa-
tion given by the budget constraint

qtKt+1 +Bt+1 =
Rbt
πt
Bt + (qt + rt)Kt + (1− τt)

[
τPt +γ

1+γ
(wtNt)

(1−τPt ) + ΠU
t + ΠF

t

]
− xt , (30)

and the consumption Euler equation for capital

uc(xt) = βEt
qt+1 + rt+1

qt
uc(xt+1), (31)

which then yields the optimal portfolio combination of K and B given return expectations.

2.3 Government

This leaves us with the government sector. The government operates a monetary and a fiscal
authority. The monetary authority controls the nominal interest rate on liquid assets, while
the fiscal authority issues government bonds to finance deficits, chooses both the average tax
rate in the economy and the tax progressivity, and makes expenditures.

We assume that monetary policy sets the nominal interest rate following a Taylor-type
(1993) rule with interest rate smoothing:

Rb
t+1

R̄b
=

(
Rb
t

R̄b

)ρR (πt
π̄

)(1−ρR)θπ
(

Yt
Yt−1

)(1−ρR)θY

εRt . (32)

The coefficient R̄b ≥ 0 determines the nominal interest rate in the steady state. The coeffi-
cients θπ, θY ≥ 0 govern the extent to which the central bank attempts to stabilize inflation
and output growth, Yt

Yt−1
. The parameter ρR ≥ 0 captures interest rate smoothing.

We assume that government debt evolves according to the rule (c.f. Woodford, 1995)

Bt+1

Bt

=

(
Bt

B̄

)−γB (πt
π̄

)γπ ( Yt
Yt−1

)γY
Dt , Dt = DρD

t−1ε
D
t , (33)

where Dt is a persistent shock to the government’s structural deficit. Besides issuing bonds,
the government uses tax revenues Tt, defined below, to finance government consumption, Gt,
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and interest on debt. The parameters γB, γπ, and γY measure, respectively, how the deficit
reacts to outstanding debt, inflation, and the output gap.

The government sets the average tax rate in the economy according to a similar rule

τt
τ̄

=
(τt−1

τ̄

)ρτ ( Bt

Bt−1

)(1−ρτ )γτB
(

Yt
Yt−1

)(1−ρτ )γτY

. (34)

The level parameter of the tax code τLt adjusts such that the average tax rate on income
equals this target level, i.e.,

τt =
Et
(
wtnithit + Ihit=0ΠE

t

)
− τLt Et

(
wtnithit + Ihit=0ΠE

t

)τ̄P
Et (wtnithit + Ihit=0ΠE

t )
, (35)

where Et is the expectation operator, which here gives the cross-sectional average. Total gov-
ernment tax revenues Tt are then Tt = τt

(
wtnithit + Ihit 6=0ΠU

t + Ihit=0ΠE
t

)
and the government

budget constraint determines government spending residually: Gt = Bt+1 + Tt −Rb
t/πtBt.

There are thus two shocks to government rules: monetary policy shocks, εRt , and structural
deficit shocks, εDt . We assume these shocks to be log normally distributed with mean zero.

2.4 Goods, asset, and labor market clearing

The labor market clears at the competitive wage given in (4). The liquid asset market clears
whenever the following equation holds:

Bt+1 + qΠ
t = Bd(At, wt, w

F
t ,Π

E
t ,Π

U
t , qt, rt, q

Π
t , q

Π
t−1, R

b
t , πt, π

W
t , τt,Θt,Wt+1)

:= Et
[
λb∗a,t + (1− λ)b∗n,t

]
, (36)

where b∗a,t, b∗n,t are functions of the states (b, k, h), and depend on how households value
asset holdings in the future, Wt+1(b, k, h), and the current set of prices (and tax rates)
(At, wt, w

F
t ,Π

E
t ,Π

U
t , qt, rt, q

Π
t , q

Π
t−1, R

b
t , πt, π

W
t , τt,Θt,Wt+1). Future prices do not show up be-

cause we can express the value functions such that they summarize all relevant information
on the expected future price paths. Expectations in the right-hand-side expression are taken
w.r.t. the distribution Θt(b, k, h). Equilibrium requires the total net amount of bonds the
household sector demands, Bd, to equal the supply of government bonds plus the value of
profit shares. In gross terms there are more liquid assets in circulation; some households
borrow up to B.

The value of profit shares is, given the linearized solution, determined by a no-arbitrage
condition between bonds and profit shares. Both need to have the same expected return:
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qΠ
t R

b
t = Etπt+1

[
(1− ιΠ)qΠ

t+1 + ωΠΠF
t+1

]
. (37)

Last, the market for capital has to clear, i.e.,

Kt+1 = Kd(At, wt, w
F
t ,Π

E
t ,Π

U
t , qt, rt, q

Π
t , q

Π
t−1, R

b
t , πt, π

W
t , τt,Θt,Wt+1)

:= Et[λkt∗ + (1− λ)k] , (38)

where Kd defines the aggregate supply of funds from households—both those that trade
capital, λk∗t , and those that do not, (1 − λ)k. Again k∗t is a function of the current prices
and continuation values. The goods market then clears due to Walras’ law, whenever labor,
bonds, and capital markets clear.

When we consider the representative household model, we can think of Kd and Bd as
simply given by (30) and (31). In other words, the representative household model only
changes equilibrium conditions in replacing the Bellman equation and the capital and bonds
demand equations, but leaves the entire other model structure unchanged.

2.5 Equilibrium

A sequential equilibrium with recursive planning in our model is a sequence of policy functions
{x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t }, a sequence of value functions {Wt}, a sequence of prices {wt, wFt ,ΠE

t ,Π
U
t ,

qt, rt, q
Π
t , R

b
t , πt, π

W
t , τt}, a sequence of stochastic states {At, Zt,Ψt, µ

Y
t , µ

W
t , Dt} and shocks

{εAt , εZt , εΨt , ε
µY
t , εµWt , εDt , ε

R
t }, aggregate capital and labor supplies {Kt, Nt}, distributions Θt

over individual asset holdings and productivity, and expectations for the distribution of future
prices, such that

1. Given the functionals EtWt+1 for the continuation value and period-t prices, policy
functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } solve the households’ planning problem; and given the
policy functions {x∗a,t, x∗n,t, b∗a,t, b∗n,t, k∗t } and prices, the value functions {Wt} are a solu-
tion to the Bellman equation (27).

2. Distributions of wealth and income evolve according to households’ policy functions.

3. The labor, the final goods, the bond, the capital, and the intermediate goods markets
clear in every period, interest rates on bonds are set according to the central bank’s
Taylor rule, fiscal policies are set according to the fiscal rules, and stochastic processes
evolve according to their law of motion.

4. Expectations are model consistent.
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3 Numerical solution and estimation technique

Solving for the sequential equilibrium of the model is a challenging task, in particular in
an estimation setting. In the following, we develop our new Bayesian reduction technique
starting from well-known principles in solving for state-space solutions of difference equations.
First, we summarize how one can write a heterogeneous-agent model in form of a system of
difference equations, following Reiter (2009). Then, we explain how our method achieves the
necessary complexity reduction that renders the solution algorithm fast enough to repeatedly
obtain a state-space solution within the estimation procedure, even when the household
problem is high dimensional. Third, we propose a metric to assess the quality of our solution
relative to alternatives. Finally, we discuss how the proposed state-space solution is integrated
in a Bayesian estimation.

3.1 From representative-agent to heterogeneous-agent solution

To understand the solution procedure we propose, it is useful to start by thinking about
the representative agent twin of our model as in Section 2.2.3. Following Klein (2000) and
Schmitt-Grohé and Uribe (2004), we represent the sequential equilibrium as the solution of
a non-linear difference equation

EtF (X∗t , X
∗
t+1) = 0, (39)

where X∗t are combined state and control variables. While the partitioning of X∗t into states
and controls matters for the solution of (39), it is not central to our argument. Instead,
in moving from the representative-agent to the heterogeneous-agent model, it is useful to
partition the variables in X∗t in terms of whether they are household choices or not. This
means, we separate out composite consumption, xt, capital demand, Kd

t , and bond demand,
Bd
t , and capture by Xt all other aggregate variables. Both Bd

t and Kd
t are state variables

and xt is a control. The corresponding equilibrium conditions are the consumption Euler
equations and the budget constraint of the household, equations (29) – (31). In equilibrium,
the capital demanded by firms, Kt, and the bonds offered by the government, Bt, need to
align with the household plans, i.e., (36) and (38) need to hold. This means, we can write
the representative household equilibrium as

EtF ({xt, Kd
t , B

d
t }, Xt, {xt+1, K

d
t+1, B

d
t+1}, Xt+1) = 0. (40)

Moving to the heterogeneous agent case we simply replace the household variables by a
large vector of variables and the corresponding optimality and equilibrium conditions (see
Reiter, 2009), discretizing the idiosyncratic state space. Specifically, the Bellman equation

18



(27) pins down the optimal policy at each node (b, k, h) and the sequence of continuation
values, Wt(b, k, h).15 Similarly, for each node, (28) describes how the mass of households
evolves over time. Taken together, (27) and (28) define a set of equilibrium conditions for
the evolution of continuation values and distribution masses—two conditions for each node
(b, k, h). These “replace” (29), (30), and (31) of the representative agent model. We sum-
marize these “idiosyncratic variables”, continuation values and masses, by ft in the following
and obtain as the equilibrium condition—with a slight abuse of notation:

EtF (ft, Xt, ft+1, Xt+1) = 0. (41)

In principle, a first-order approximation of (41) can be solved in the usual way: Calculating
the Jacobian of F and, e.g., running a QZ-decomposition as proposed by Klein (2000).

3.2 Reducing complexity

In practice, however, the direct attack to linearizing and solving (41) becomes infeasible,
given the size of the system in our application. This is due to the high number of nodes of
the liquid/illiquid asset-income grid (100 × 100 × 22). Reiter (2009), Bayer and Luetticke
(2020), and Ahn et al. (2018) suggest methods that tackle the issue based on reducing the
number of state and control variables. The three approaches do so, respectively, before solving
for the stationary equilibrium, after solving for this equilibrium but before knowledge of the
dynamics, or after linearizing the system of differential equations. These approaches render a
single solution of the economic model at a good quality of approximation numerically feasible.
For estimation, we develop a novel Bayesian reduction technique for HANK models that is
more aggressive and also better informed. Below we provide an overview, further technical
details can be found in Appendix C.

Using the partitioning of variables and parameters to simplify the linearization

The first improvement is based on the observation that the dimensionality of the heterogeneous-
agent part, ft, is much larger than that of the aggregate part, Xt. Keeping this partitioning,
we write the linearized version of the difference equation (41) as[

Aff AfX

AXf AXX

]
︸ ︷︷ ︸

=A

[
ft

Xt

]
= −Et

[
Bff BfX

BXf BXX

]
︸ ︷︷ ︸

=B

[
ft+1

Xt+1

]
, (42)

15In practice our algorithm is based on the endogenous grid method of Carroll (2006) and Hintermaier and
Koeniger (2010) and thus works with marginal value functions instead of value functions.
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where we ordered, in line with the ordering of variables, the set of “idiosyncratic” equations—
(27) and (28)—first and all other equations last.

This partitioning is useful not only conceptually but also very practically. The idiosyn-
cratic equations contain only a small subset of the parameters of the model. In other words,
Aff , Bff , AfX , and BfX only depend on this small subset. What is more, AXf and BXf can
be made parameter-free if we introduce the aggregate capital/bond holdings of households
as auxiliary variables such that the distribution no longer enters the aggregate model block
directly. Therefore, we only need to update AXX and BXX when changing parameters during
the estimation that do not directly appear in the household problem. For example, changing
the fiscal-policy or Taylor-rule coefficients, or nominal rigidities only affects AXX and BXX .
This means that the number of derivatives to be calculated in the second step, i.e., when
estimating the business cycle model with heterogeneous agents, is the same as the number
of derivatives to be updated during the estimation of its representative agent “twin”.

Importantly, those parameters directly affecting the other “idiosyncratic” blocks also affect
the stationary equilibrium. This means they can be identified (calibrated) in an incomplete
markets model using time-series averages of aggregate and cross-sectional data, approaching
the estimation effectively in two steps. In our case these include: the discount factor, the
liquidity of assets, borrowing constraints, and the average income risk.

Dimensionality reduction prior to knowledge of the dynamics of the economy

Naturally the partitioning itself does not solve the problem of A and B being very large
matrices because of the high dimensional idiosyncratic grid. To tackle this problem, we
proceed in two steps. First, we reduce the dimensionality without knowledge of the dynamics
of the economy (where we extend Bayer and Luetticke, 2020). Second, we leverage that, after
solving the model once, we can reduce the model further based on the dynamics of the model.

The first step is to think of ft as parameters of the deviation of value functions and
distributions from their stationary equilibrium counterparts. This view of ft as parameters
of functions immediately implies that the dimensionality of ft no longer needs to be tightly
connected to the size of the asset-income grid. We construct these difference functions as
a mix of Chebychev polynomials and linear interpolations. The Chebychev polynomials are
used to construct the nodal values of the marginal value functions ∂Wt

∂b
and ∂Wt

∂k
used in the

first-order conditions of the optimization problem (27). When perturbing the problem (27),
we perturb the coefficients instead of the function values themselves. To reduce complexity,
we treat those polynomial coefficients as fixed (and do not perturb them) that are numerically
small (in absolute value) in the stationary equilibrium or do not affect the partial derivative
of the marginal value functions with respect to prices. The latter aspect improves on Bayer
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and Luetticke (2020); see Appendix C.1. The discrete cosine transform (DCT) and its inverse
can be used to efficiently transform nodal values to coefficients and reverse. We also use the
DCT to project the equilibrium conditions to the space of the perturbed coefficients.

The distribution function Θt, see (28), we treat similarly to the marginal value functions,
improving on Bayer and Luetticke (2020). Following their approach, we represent the dis-
tribution by marginals, F b

t , F
k
t , F

h
t and a copula, Ct(·).16 Different from their approach, we

write the copula Ct(F b
t , F

k
t , F

h
t ) at time t as the sum of the linear interpolants generated from

the steady-state copula C̄(·) and a perturbation term, Ĉt(·). This perturbation term is new
compared to Bayer and Luetticke (2020) and is a linear interpolant, too. We allow the two
components to have different nodal grids. Again, we write the nodal values of the pertur-
bation term in the form of Chebychev polynomials (by means of a DCT).17 The marginal
distributions, F b

t , F
k
t , F

h
t , enter directly in ft. More details can be found in Appendix C.1.

Dimensionality reduction based on knowledge of the economy’s dynamics

This first reduction step allows us to solve the model, but if we want the solution to be
sufficiently precise, the number of variables in the difference equation remains high and thus
the computational time for the QZ-decomposition long. One way to address this issue is
further model reduction. Ahn et al. (2018) give an overview of model reduction techniques
for difference equations. Model reduction in our case means finding an orthonormal basis
P ∈ Rn×m with m << n such that we can write ft ≈ PYt and replace the system (42) by a
system with factors Yt,[

P ′AffP P ′AfX
AXfP AXX

]
︸ ︷︷ ︸

=A′

[
Yt

Xt

]
= −Et

[
P ′BffP P ′BfX

BXfP BXX

]
︸ ︷︷ ︸

=B′

[
Yt+1

Xt+1

]
. (43)

The solution of this reduced model should give us an arbitrarily close approximation to the
solution of the original problem (42).

For a given set of parameters, this can be achieved by solving first the original system (42)
given a prior parameterization that includes the shock processes. Based on this solution, we
calculate the variance-covariance matrix, Σf , of each sub-group of elements in f (the value
functions and the copula separately) and perform a Jordan eigenvalue decomposition thereof.

16There is a numerical advantage of writing the distribution in the form of a copula and marginals. The
copula reflects cross-terms, which can be expected to be of lesser importance for aggregate dynamics. The
separation then allows us to calibrate separate degrees of precision in line with the differences in importance.

17The fact that C is a copula poses some parameter restrictions on the histogram of Ĉ. Its marginals
have to be zero. These restrictions translate naturally into zero-coefficients of some Chebychev polynomials
because higher-order polynomials on the roots grid sum to zero.
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This gives us a factorization of f , where factors associated with small eigenvalues, λ2f , are
approximately constant and thus irrelevant for the model dynamics and in particular the
estimation:

Σf =
[
Q′1f Q′2f

] [λ1f 0

0 λ2f

][
Q1f

Q2f

]
. (44)

This means, we can choose P = Q′1f as basis for the model reduction. The reduced model
then, by construction, has a tiny approximation error relative to the full model at the pa-
rameterization used to construct P . Furthermore, one can expect that this basis P remains a
reasonably good basis in the vicinity of the parameters.18 Therefore, our algorithm updates
P only infrequently. We show, for our application, that, even when parameters change but
P does not, the solution of the reduced model is a precise approximation of the full model
solution. In Appendix C.2 and C.3, we argue in more detail, why one can expect a strong
model reduction possibility and why this reduction can be expected to be stable to parameter
variations in the estimation.

In practice, we generate P initially based on the model’s priors, and then update it once
during mode-finding and once after finding a tentative mode of the parameter distributions
but before running the Markov-Chain Monte-Carlo algorithm. In our application, the model
reduction leaves us with 376 state variables and 77 controls. This includes 21 aggregate state
variables and 44 aggregate controls.

3.3 Assessment of quality

We check the precision of our second model-reduction step by comparing the likelihood and
the impulse response functions (IRF) across model solutions. The first solution we compare
to is the one in (42) without second model-reduction step. The second solution we compare
to is the sequence-space method proposed by Boppart et al. (2018) and Auclert et al. (2021b).

We suggest to evaluate the distance between two model solutions based on the IRFs they
produce for the data used in estimation. Concretely, we define the distance between the
reference model solution S1 and the alternative solution S2 as

DS1,S2(H, x|ϑ) = 1−
∑

s∈S
∑H

h=1 [IRFS1(x, s, h|ϑ)− IRFS2(x, s, h|ϑ)]2∑
s∈S
∑H

h=1 [IRFS1(x, s, h|ϑ)]2
, (45)

where H is the horizon up to which we evaluate the response of variable x to a one-standard-
deviation shock εs, summing over all aggregate shocks, s ∈ S. ϑ is the parameter vector. The
metric is akin to a forecast error variance decomposition: the distance informs us about the

18Ahn et al. (2018) argue that small variations compared to the ideal minimal basis can be compensated
by retaining a somewhat too high dimensional basis.
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fraction of the forecast error variance for x under the reference solution S1 that is “explained”
by the alternative solution S2. We show in Section 4.4 below that our solution is practically
identical to both reference solutions.

3.4 Estimation

As explained, it is useful to group the model parameters ϑ into those that affect the sta-
tionary equilibrium and those that do not when thinking about estimating the model. The
representative agent literature knows this split, too, and sometimes calibrates parameters like
steady-state markups or average government expenditure shares (e.g. Smets and Wouters,
2007; Christiano et al., 2005). In the heterogeneous-agent setting, the set of parameters that
affect the stationary equilibrium is larger. Thus, more parameters can be calibrated. At the
same time, parameters that affect the steady state are more costly to estimate from the time-
series properties of data because they require recalculating the stationary equilibrium. For
this reason, we calibrate those parameters to cross-sectional moments and time-series averages
of the data. This means that in our application, compared to the typical representative-agent
estimation that tries to calibrate as little as possible (e.g., Justiniano et al., 2011), we addi-
tionally include the discount factor, the risk aversion, the Frisch elasticity of labor supply,
and the capital share in the set of calibrated parameters. Of course, we also calibrate the
forcing processes of heterogeneity itself. We come back to this in more detail in Section 4.

Those parameters that do not affect the stationary equilibrium can be estimated from
the time-series evolution of the data (cross-sectional and aggregate). For this estimation,
we use an off-the-shelve Bayesian approach as described in An and Schorfheide (2007) and
Fernández-Villaverde (2010). In particular, we use the Kalman filter to obtain the likelihood
from the state-space representation of the model solution and employ a standard random walk
Metropolis-Hastings (RWMH) algorithm to generate draws from the posterior likelihood after
an extensive mode finding. Smoothed estimates of the states at the posterior mean of the
parameters are obtained via a Kalman smoother of the type described in Koopman and
Durbin (2000) and Durbin and Koopman (2012). One likelihood evaluation takes ca. 550 ms
on a desktop computer (Intel i7-10700K, code written in Julia), 80% of the time is needed
for the model solution, the remainder for the Kalman filter.19 The full grid for income and
wealth has 220,000 nodes and the model after the first step of dimensionality reduction which
is used to calculate P has 3484 variables. Finding the stationary equilibrium takes roughly 7
minutes, the first linearized solution that does not yet use the second model reduction takes

19We do not leverage the fact that the model solution can be obtained without repeating the QZ-
decomposition when changing only the parameters of the forcing processes. When only parameters of the
exogeneous shock processes are estimated, the model solution can, as usual, be obtained in virtually no time.
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around 15 minutes to compute.
We deliberately choose the most commonly used approach in estimating DSGE models,

but our state-space based solution approach also lends itself directly to more sophisticated
estimation techniques. One particular example is the Sequential Monte Carlo approach
(Herbst and Schorfheide, 2014, 2015) that Acharya et al. (2021) advocate for the estimation
of large heterogeneous-agent business cycle models.

4 Parameterization, priors, posteriors, and quality

We estimate several variants of the model using the procedure outlined above. In the following
we focus on two main variants and compare them to their representative agent twin; details on
all other variants can be found in the appendix. First, we estimate the model on aggregate
data alone and allow only for standard aggregate shocks (HANK). Second, we include in
the estimation distributional time-series data and allow for shocks to income risk and tax
progressivity, for which we also add observables (HANK-X).20

4.1 Calibrated parameters

We fix some parameters that affect the stationary equilibrium targeting average data ratios;
see Table 1 (all at the quarterly frequency of the model).21 In addition, we directly take
some parameter estimates from the literature. In particular, we take the idiosyncratic income
process from Storesletten et al. (2004), which gives us ρh = 0.98 and σ̄h = 0.12. Guvenen
et al. (2014) provide the probability that a household will fall out of the top 1 percent of
the income distribution in a given year, which we take as the transition probability from
entrepreneur to worker, ι = 6.25%. We set the relative risk aversion, ξ, to 4, which is
common in the incomplete markets literature; see Kaplan and Violante (2014).22 We set the
Frisch elasticity to 0.5; see Chetty et al. (2011). The steady-state price and wage markups
are both fixed to 10%, following Born and Pfeifer (2014).

All other calibrated parameters are closely tied to time-series averages of data moments.
While they are calibrated jointly, we present them as if they are only informed by the statistic
that is most informative for a given parameter: The transition probability to become an
entrepreneur, ζ = 0.0002, pins down the per capita profits of entrepreneurs and therefore the
top 10 share in wealth. The discount factor, β = 0.984, and the liquidity of assets, λ = 0.058,

20See Footnotes 12 and 13 for the adjustments to the baseline model.
21Appendix A.2 provides the table of steady-state parameters for the recalibrated representative agent

analogue of our model.
22We also estimate our model with a relative risk aversion of 2; see Section 5.3 and Appendix B.
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Table 1: Calibration (quarterly frequency)

Par. Value Description Target Data Source

Households: Income process
ρh 0.980 Persistence labor income Storesletten et al. (2004)
σh 0.120 Standard dev. labor income Storesletten et al. (2004)
ι 0.063 Trans. prob. from E. to W. Guvenen et al. (2014)
ζ 2.0E-5 Trans. prob. from W. to E. Top 10 wealth share: 67% WID 1954-2019

Households: Financial frictions
λ 0.058 Portfolio adj. prob. Liquid to illiquid, B+q̄Π

K = 0.25 SCF 1950-2016
R̄ 0.018 Borrowing penalty Share of borrowers: 16% SCF 1983-2016
q̄Π/Y 1.140 Value of profit shares Gov. debt to output, BY = 1.72 NIPA 1954-2019

Households: Preferences

β 0.984 Discount factor Capital to output, KY = 11.44 NIPA 1954-2019
ξ 4.000 Relative risk aversion Kaplan and Violante (2014)
γ 2.000 Inverse of Frisch elasticity Chetty et al. (2011)

Firms
α 0.680 Share of labor Average labor income share BLS 1954-2019
δ0 0.018 Depreciation rate 7.0% p.a. NIPA 1954-2019
η̄ 11.000 Elasticity of substitution Born and Pfeifer (2014)
ζ̄ 11.000 Elasticity of substitution Born and Pfeifer (2014)

Government
τ̄L 0.175 Tax rate level Gov. consumption, GY = 0.2 NIPA 1954-2019
τ̄P 0.120 Tax progressivity Average progressivity SOI 1954-2019
R̄b 1.000 Gross nominal rate Growth ≈ interest rate
π̄ 1.000 Gross inflation Indexation, w.l.o.g.

Notes: Calibration targets are the sample averages when a data source is given. Otherwise
the parameter is fixed to the value in the cited literature. BLS: Bureau of Labor Statistics.
NIPA: National Income and Product Accounts. SCF: Survey of Consumer Finances. SOI:
Statistics of Income. WID: World Inequality Database. Details on the data can be found in
Appendix A.

pin down the capital to output ratio and the share of liquid assets in household portfolios. The
borrowing penalty R̄ = 0.018 determines how many households are indebted. The difference
between total liquidity and government bonds pins down the value of profit shares relative to
output, q̄Π/Y = 1.14, which determines the ratio of ωΠ and ιΠ as ωΠ/ιΠ = ηq̄Π/Y through
the steady-state version of (37). We set steady-state inflation to zero as we have assumed
indexation to the steady-state inflation rate in the Phillips curves. We set the steady-state
net interest rate on bonds also to zero, in order to broadly capture the average federal funds
rate in real terms minus output growth over 1954 – 2019.
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The share of labor in production, α = 0.68, is pinned down by the average labor income
share (given η). The average quarterly depreciation of δ0 = 0.0175 can be read off the average
depreciation rates on US capital (including buildings). We set the average taxation level,
τ̄L = 0.175, such that the budget balances for the observed level of government consumption.
Finally, we follow Ferriere and Navarro (2018) in constructing a direct estimate for tax
progressivity, extending their estimates until 2017; see Appendix A.1.2. This approach uses
the our assumed non-linear tax schedule, which approximates the progressivity of the US
tax system well (see Heathcote et al., 2017), to measure progressivity based on Mertens
and Montiel Olea (2018)’s estimates of average marginal tax rates. The tax progressivity
exponent, τ̄P = 0.120, matches the time-series average of this statistic.

4.2 Time-series data used for estimation

For the estimation, we use quarterly US data from 1954Q3 to 2019Q4 and include the follow-
ing seven observable time series: the growth rates of per capita GDP, private consumption,
investment, and wages, all in real terms; the logarithm of the level of per capita hours worked;
the log difference of the GDP deflator; and the (shadow) federal funds rate. Our model is
stationary so all growth rates are demeaned; see Appendix A.1.2 for a formal depiction of
the vector of observables. These data are standard in the estimation of DSGE models.

In the HANK-X extension, we add more data with shorter and/or non-quarterly avail-
ability: First, cross-sectional information on wealth and income shares of the top 10 percent.
These are available at an annual frequency from 1954 to 2019 from the World Inequality
Database.23 The reason we focus on the top 10 wealth and income shares is that these
measures are most similar across alternative, but less frequently available, data sources such
as the Survey of Consumer Finances (SCF); see Kopczuk (2015). Second, we use the time
series of the tax progressivity estimates that we construct in Appendix A.1.2. Third, we
add income risk estimates, available at a quarterly frequency from 1983Q1 to 2013Q1, from
Bayer et al. (2019) based on panel data in the Survey of Income and Program Participation
(SIPP). In this extended estimation we also allow for shocks to progressivity and income
risk, which directly affect the distribution of income. We allow for measurement error on
the cross-sectional data (the top 10 shares) to avoid stochastic singularity. For simplicity, we
treat the measurement error on the top 10 shares as classical (normal and i.i.d.) despite the
fact that the shares are non-linear functions of the sampled micro data. In other words, we
assume that measurement errors reflect more than just sampling uncertainty.

23This database draws on work by Piketty, Saez, and Zucman; see, e.g., Piketty and Saez (2003) or Saez
and Zucman (2016).
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4.3 Priors and posteriors

Columns 1-4 of Table 2 present the parameters we estimate, their assumed prior distributions
and their posteriors. The priors and posteriors for the distributions of the shock processes
are listed in Appendix A.3. Where available, we use prior values that are standard in the
literature and independent of the underlying data.

Priors

Following Justiniano et al. (2011), we impose a gamma distribution with prior mean of 5.0
and standard deviation of 2.0 for δ2/δ1, the elasticity of marginal depreciation with respect
to capacity utilization, and a gamma prior with mean 4.0 and standard deviation of 2.0 for
the parameter controlling investment adjustment costs, φ. For the slopes of price and wage
Phillips curves, κY and κw, we assume gamma priors with mean 0.10 and standard deviation
0.03. This corresponds to price and wage contracts having an average length of four quarters
at the prior mode. Regarding the profit-shares parameters ιΠ and ωΠ, we assume that ιΠ

follows a shifted beta distribution with mean 0.5 and standard deviation 0.25. We set the
extrema of the shifted distribution such that the expected duration of the profit shares, 1

ιΠ
,

is at least ten years and at most 200 years. The duration at the prior mode is 20 years. The
value for ωΠ then follows from keeping the stationary equilibrium value of q̄Π constant.

For monetary policy, we estimate feedback parameters in the Taylor rule for inflation and
output growth, θπ and θY . We impose normal distributions with prior means of 1.7 and 0.13,
respectively. In addition, we allow for interest rate smoothing with parameter ρR. Here we
assume a beta distribution with parameters (0.5, 0.2).

In the bond rule, the debt-feedback parameter γB is assumed to follow a gamma distri-
bution with mean 0.10 and standard deviation 0.08. This centers the prior for the auto-
correlation of debt around 0.9 and implies a half-life of between one and eight years for a
deviation in debt. The parameters governing the feedback to inflation and output growth,
γπ and γY , follow standard normal distributions. Similarly, the autoregressive parameters,
in the tax rules, ρP and ρτ , are assumed to follow beta distributions (with mean 0.5 and
standard deviation 0.2). The feedback parameters for average tax rates, γτY and γτB, follow
standard normal distributions.

Following Smets and Wouters (2007), the autoregressive parameters of the shock processes
are assumed to follow a beta distribution with mean 0.5 and standard deviation 0.2. The
standard deviations of the shocks follow inverse-gamma distributions with prior mean 0.1%
and standard deviation 2%.24 In our baseline we do not include measurement errors, but
allow for these when including estimates of top income and wealth shares as additional data.

24In the HANK-X extension, we use a higher prior mean for income risk shocks, s, given the evidence in
Bayer et al. (2019).
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Posteriors

In Table 2, columns 5-7 report the posterior distributions across the three main estimation
variants: RANK, HANK, and HANK-X. Here, we focus on the frictions and policy parame-
ters. The estimated parameters of the exogenous driving processes can be found in Appendix
A.3. Checks on the convergence of the estimator are provided in Appendix A.8.25 The pa-
rameter estimates for HANK and HANK-X are typically close to the RANK estimates, but
there are few notable differences.

In particular, the estimated investment friction and the price rigidities in RANK are a
bit larger. For the investment adjustment costs, this reflects, in part, that the portfolio
adjustment costs at the household level already generate inertia in aggregate investment.
Our estimates of the wage- and price-setting frictions imply that wages adjust roughly every
two to three quarters in all models and prices adjust every third quarter in HANK and every
fourth quarter in RANK.

The estimated policy rules are even more similar across models. There is substantial
interest rate inertia. All variants estimate a coefficient of 0.8 for interest smoothing. The
Taylor rule coefficient on inflation is between 2.0 and 2.2; the one on output growth is between
0.2 and 0.3. The fiscal rule that governs deficits and hence government spending exhibits a
countercyclical response to inflation with elasticities between, −2.9 and −2.2. The elasticities
with respect to output growth are between −0.8 and −0.4. Deficits feature a high degree
of persistence as well. The tax rule that governs average taxation has much less inertia.
This implies, given the transitory nature of output growth variations, that tax rates respond
mostly to the level of government debt. More debt implies higher taxes.

When we estimate the income risk process in HANK-X, we find income risks to be pro-
cyclical in the sense that they go up when other shocks drive up output growth. Given the
size of shocks that we estimate, however, the feedback is small. A one percent output growth
increase, leads to a 0.55 percent higher income risk; a one standard deviation shock to income
risk leads to a 70 percent higher level of risk.

The posterior for ιΠ implies a duration of profit shares of 27 years on average in the
HANK specification and 14 years in HANK-X. Using the top 10 income data, leads to a
lower duration and therefore higher payout share ωΠ (13% vs 23%). The higher payout
share implies a smoother income inequality series, but amplifies the volatility of aggregate
consumption. Looking at the credible intervals, one sees that adding the cross-sectional data
substantially increases the precision of the estimate.

25We estimate each model using a single RWMH chain after an extensive mode search. After a long burn-in,
400,000 draws from the posterior are used to compute the posterior statistics. The acceptance rates across
chains are between 20% and 30%. Appendix A.8 provides Geweke (1992) convergence statistics as well as
traceplots of individual parameters.
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Table 2: Prior and posterior distributions of estimated parameters

Prior Posterior

Parameter Distribution Mean Std. Dev. RANK HANK HANK-X

Frictions

δs Gamma 5.00 2.00 0.723 0.987 0.706
(0.418, 1.098) (0.766, 1.225) (0.536, 0.897)

φ Gamma 4.00 2.00 7.918 3.561 1.941
(6.039, 10.074) (2.936, 4.246) (1.811, 2.071)

κ Gamma 0.10 0.03 0.119 0.173 0.146
(0.087, 0.155) (0.134, 0.216) (0.113, 0.182)

κw Gamma 0.10 0.03 0.279 0.279 0.239
(0.203, 0.363) (0.217, 0.344) (0.184, 0.299)

ιΠ Beta∗ 0.50 0.25 — 0.401 0.700
(—, —) (0.075, 0.810) (0.372, 0.948)

Monetary policy

ρR Beta 0.50 0.20 0.795 0.784 0.803
(0.769, 0.819) (0.757, 0.810) (0.778, 0.826)

σR Inv.-Gamma 0.10 2.00 0.237 0.235 0.231
(0.218, 0.258) (0.216, 0.256) (0.212, 0.251)

θπ Normal 1.70 0.30 2.165 1.953 2.078
(1.983, 2.362) (1.750, 2.169) (1.858, 2.315)

θY Normal 0.13 0.05 0.254 0.201 0.219
(0.184, 0.324) (0.133, 0.269) (0.150, 0.288)

Fiscal policy: deficit

ρD Beta 0.50 0.20 0.959 0.960 0.968
(0.924, 0.983) (0.923, 0.990) (0.936, 0.992)

γB Gamma 0.10 0.08 0.086 0.047 0.020
(0.035, 0.136) (0.012, 0.088) (0.004, 0.043)

γπ Normal 0.00 1.00 -2.730 -2.858 -2.174
(-3.136, -2.346) (-3.20, -2.534) (-2.375, -1.986)

γY Normal 0.00 1.00 -0.718 -0.784 -0.436
(-0.877, -0.568) (-0.88, -0.693) (-0.494, -0.383)

Fiscal policy: taxes

ρτ Beta 0.50 0.20 0.480 0.414 0.493
(0.357, 0.589) (0.247, 0.557) (0.393, 0.591)

γτB Normal 0.00 1.00 3.568 2.944 3.293
(2.481, 4.704) (1.936, 4.031) (3.254, 3.334)

γτY Normal 0.00 1.00 -1.746 1.571 -0.921
(-3.108, -0.385) (1.118, 1.979) (-0.943, -0.90)

Income risk

ρs Beta 0.70 0.20 — — 0.545
(—, —) (—, —) (0.476, 0.607)

ΣY Normal 0.00 100.00 — — 28.88
(—, —) (—, —) (28.864, 28.895)

Log marginal data density (only aggregate data) 6581 6586
Log marginal data density (with cross-sectional data) 6622

Notes: The table displays the estimated parameters, their priors and posterior means across three model
variants: HANK, HANK-X, and RANK. The parameters of the shock processes are shown in Appendix A.3.
The 90% credible intervals are shown in parentheses. Posteriors are obtained by an MCMC method. The
standard deviations have been multiplied by 100 for better readability. *: The parameter actually estimated
and displayed is 800ιΠ−1

19 to ensure an expected duration of the profit shares between 10 and 200 years.
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Table 2 also reports the marginal data densities for the three model estimates. When
estimating the models with aggregate data alone, HANK is more strongly supported by that
data. What is more, the HANK models predict certain correlations of cross-sectional and
aggregate data that RANK, by construction, cannot.26

4.4 Quality of the model reduction

We assess the quality of our model reduction based on the estimated posterior distribution.
First, we evaluate the quality of the second-stage of the model reduction. For this purpose, we
draw 1000 parameter vectors from the posterior distribution and, for each parameter draw, we
solve the model once with, and once without, the second stage reduction. The second-stage
reduction matrix P is kept constant throughout the experiments. This gives us a sampled
distribution of distances between the two model solutions based on the impulse response
functions (IRF). We find that the distance between the two solutions is basically zero. Table
3 reports the 1st percentile of the sampled quality measure (i.e., the largest distance). Note
that the first-stage reduction is, by construction, invariant to the estimated parameters. This
means that, at least in the vicinity of the estimated parameters, there is virtually no loss
from using the second-stage model reduction even when P is not re-optimized.

Still, one might be concerned that the necessary first-stage reduction introduces approxi-
mation errors. To assess this, we evaluate the solution under our method against a sequence-
space Jacobian solution. Auclert et al. (2021b) argue that the approximation quality of such
method is very good if the horizon is chosen sufficiently long. Also here, we find that the
distance between the solution techniques in terms of IRFs is extremely small. Given that we
have shown the invariance of the model reduction in our first experiment, we only calculate
the distance at the posterior mean.

Concretely, we calculate for both sets of experiments our metric for all observable variables
used in the estimation. The metric is calculated based on all shocks using their estimated
variances. Columns 2 and 4 show the statistics for the HANK specification, columns 3 and 5
for HANK-X. Here, we report the largest distance over the first 32 quarters. The distances
are, as mentioned before, minimal.27 In Appendix C.4, we also compare graphically the IRFs
conditional on a specific shock between sequence-space and state-space solution. All IRFs
are extremely close across both techniques also beyond the business cycle horizon.

26We use this cross-sectional data in the estimation of HANK-X, which also means we cannot directly
compare its marginal data density with the two other estimates.

27We calculate the sequence-space solution based on a 300 period transition as in Auclert et al. (2021b).
We use the IRFs from the state-space solution to obtain the endpoint of that transition in order to eliminate
the effect of not being exactly at the stationary equilibrium after 300 periods. We do so because after some
of the shocks, the economy has even after 300 periods not fully returned to the stationary equilibrium.
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Table 3: IRF variation captured by state-space solution with second-stage model reduction

relative to no second stage relative to sequence space

Observable HANK HANK-X HANK HANK-X

Output growth 100.00 100.00 100.0 100.00
Investment growth 100.00 100.00 100.00 99.99

Consumption growth 100.00 100.00 99.96 99.97
Hours worked 100.00 100.00 100.00 99.99

Wage growth 100.00 100.00 100.00 100.00
Policy rate 100.00 100.00 99.98 99.99

Inflation 100.00 100.00 99.99 99.99

Top 10 wealth share – 100.00 – 99.85
Top 10 income share – 100.00 – 100.00

Tax progressivity – 100.00 – 100.00
Income risk – 100.00 – 100.00

Notes: The table displays (in percent) variation of IRFs based on a baseline solution that is captured by
our state-space solution with second-stage model reduction. This statistic measures the distance between
impulse responses generated by solving the model with different solution techniques and is based on (45).
Columns 2 and 3 compare the solution with and without second-stage model reduction, columns 4 and 5
our solution technique to a sequence-space Jacobian solution. Columns 2 and 3 refer to the 1st percentile
obtained by drawing 1000 parameter vectors from the posterior distribution. Columns 4 and 5 refer to the
posterior mean. All columns report the minimum (i.e., largest distance) over the first 32 quarters. A value
of exactly 100 means that impulse responses are identical.

5 US business cycles and inequality

We apply our estimated model to study the shocks that drive the US business cycle and to
understand what these shocks and their propagation imply for the dynamics of inequality.
We do so in terms of variance decompositions at business cycle frequency (between 6 and
32 quarters, based on the frequency domain decompositions in Uhlig, 2001) and in terms of
historical decompositions.28

5.1 Variance decompositions

Figure 1 shows the variance decompositions for output and consumption growth (top panels)
for the representative agent model (RANK) as well as for the two hetereogeneous agent
model estimates (HANK and HANK-X). Further variance decompositions of observables and
the credible intervals can be found in Appendices A.4 and A.5. Despite the very similar

28Appendix A.7 provides impulse response functions for all shocks and observables.
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parameter estimates across models, there are some notable differences in the importance of
shocks for the business cycle, but also many similarities. In all models, technology shocks
are the most important drivers of output. This is in line with what other authors have found
for the RANK model (Smets and Wouters, 2007; Justiniano et al., 2010, 2011).

In the HANK model, investment-specific technology shocks are even more important than
in RANK. The reason behind this is that these shocks have a stronger impact on consumption.
This is because positive investment-specific technology shocks move asset prices down and
expected wage incomes up; see the impulse response functions in Appendix A.7. This drives
consumption up because wage-earners have a larger (intertemporal) marginal propensity
to consume than capital holders. More specifically, within our two-asset framework, there
is a sizable share of households with little illiquid assets but sufficient liquidity such that
they can increase their consumption on impact in the expectations of higher future wages.
By contrast, illiquid-asset-rich households expect lower asset income in the future but they
smooth this change over a longer period. As a result, consumption goes up on impact. In
RANK, this difference of intertemporal MPCs between wage and capital-income earners is
absent, and consumption and investment negatively comove on impact after an investment-
specific technology shock. For this reason, investment specific technology shocks add little
to consumption movements in RANK.

Comparing the variance decompositions of the HANK and HANK-X estimates, we see
that the inclusion of inequality data, tax-progressivity, and income risk also has some impact
on the relative contribution of shocks to aggregate consumption (and to a lesser degree on
output). For consumption, demand side shocks become somewhat more important. In par-
ticular, we see that uncertainty shocks contribute significantly. However, given the relatively
low degree of price stickiness and relatively strong monetary stabilization we estimate, the
contribution of all demand shocks to output growth is limited.

The HANK models, different to the RANK setting, make it possible to study the effect
of business cycle shocks on inequality; see the middle panels of Figure 1. In fact, the HANK-
X model also exploits the inequality time-series data for the estimation. Again, we find
that technology shocks have an important impact on inequality. However, if we actually use
the inequality data for the estimation, the effect of investment-specific technology shocks in
income inequality is tuned down and markup shocks become more important. For wealth
inequality, there is little difference in the effect of technology shocks between the two models.
What is more, as the HANK-X variant also allows tax-progressivity shocks to impact on the
economy, they gain a visible influence on wealth inequality.

One advantage of the HANK model is that it allows us to think about drivers of consump-
tion throughout the income and wealth distribution. The bottom panels of Figure 1 give an
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Figure 1: Variance decompositions: Output growth, consumption growth, and inequality
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example for this and show the variance decomposition of the average consumption of the 10
percent consumption poorest and consumption richest households. The differences of which
shocks are important for these two groups are stark. Consumption of the consumption poor
is much more strongly influenced by demand side shocks than consumption of the rich. This
suggests that more detailed data on the time series of the consumption distribution might
be helpful in identifying business cycle shocks in future work.

5.2 Historical decompositions of inequality

Figure 2 adds to these findings by providing historical decompositions for US inequality
dynamics. Recall that we allow for measurement error on inequality when estimating the
HANK-X model. This implies that neither the HANK nor the HANK-X variant need to
match the inequality data perfectly. The top panels of the figure compare the model pre-
dicted movements of the top 10 wealth and income shares with the actual data. Perhaps
surprisingly, already the HANK estimate implies a falling wealth inequality during the 1970s
which recovers (and overshoots) in the 21st century. The HANK-X model follows the ob-
served wealth inequality closely. The model rather changes the shocks and frictions that drive
the business cycle slightly instead of giving up on wealth inequality and “explaining” the data
by measurement error.29 In other words, the cross-sectional data is somewhat informative
for the business cycle model, but there is no strong tension.

For income inequality, the situation is different. The HANK models imply a fluctuation
of the income share of the top 10 percent that is too volatile. This high volatility is driven by
large and pro-cyclical swings in profits. Yet, such strong fluctuations are absent in the income
inequality data. Surprisingly, however, the model does broadly capture the lower frequency
movements in income inequality with its increase since the 1980s. The figure further suggests
that persistent increases in price markup targets are behind those low frequency movements
in income inequality. This finding resembles the evidence by De Loecker and Eeckhout (2020)
on the evolution of markups in the US.30 Since the cyclical properties of the top 10 income
share largely follow the cyclical properties of profits in the model, finding too volatile top
incomes is intimately linked to the literature that discusses tensions between model-implied
markups/profits and the data (see, e.g., Andreasen and Dang, 2019; Nekarda and Ramey,
2020). The slow moving nature of top income shares suggest through the lens of our model
that profit incomes need to be less volatile or less concentrated among the rich. This holds
true despite the fact that we allow the model to choose in the estimation how much surprise

29The estimated standard deviations of measurement errors can be found in Appendix A.3.
30There is a growing literature on the rise of markups; see, e.g., Karabarbounis and Neiman (2019), Barkai

(2020), Hall (2018), or Kehrig and Vincent (2020).
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Figure 2: Historical decompositions: Inequality
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Notes: Historical decompositions for the top 10 wealth and income shares for the estimated
HANK and HANK-X models. Top panels show the implied series (HANK and HANK-X)
obtained through a Kalman smoother in comparison to the data. The two bottom panels show
the actual decomposition into shock contributions for the HANK-X estimates. Y-axis: Percent
deviation from mean.

changes in profits get distributed to a broader set of households through the market for profit
shares. In terms of the HANK-X specific shocks, we see that income uncertainty which drives
the dispersion of human capital also has contributed to the increase in income inequality over
the last 30 years. This can be viewed as the model’s way to capture skill-biased technological
change.

When we look at the historical evolution of wealth inequality, we observe that the increase
in inequality since its trough in the 1980s is primarily driven by two factors. First, investment-
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specific technology shocks that have driven up the price of capital. Since the wealthy hold a
larger share of their wealth in terms of the illiquid asset in our model, this drives up wealth
inequality and resembles the evidence from household balance sheets (Kuhn et al., 2020).
The second most important factor is again the persistent increase in markups that drives up
income inequality and thereby affects wealth inequality, too.

5.3 Robustness of estimation results

We check the robustness of our estimation results with respect to a number of potentially
important modeling choices—where other alternatives would have been sensible as well. Con-
cretely, we first estimate the model for the post-Volcker era—implicitly assuming a structural
break in 1983. Second, we ask how the HANK estimation changes if we assume a risk aver-
sion of 2 (instead of 4). Third, we model the distribution of union profits such that it leads
to no wage-compression and the wage markup only affects labor supply but not directly the
income distribution. Fourth, we allow (in HANK-X) for a systematic response of tax pro-
gressivity to income inequality and, finally, we assume King et al. (1988) preferences instead
of Greenwood et al. (1988) ones, such that there is a wealth effect in labor supply. Modeling
details, estimated parameters, and decompositions are reported in Appendix B.

We find that the view of the business cycle and inequality dynamics through the lens of
the model is relatively robust to these variations, with the exception of the KPR-variant.
In the post-Volcker period, markup shocks become somewhat more important, in a sense
reflecting their larger impact starting in the 1980s that could be seen already in the histor-
ical decompositions for the estimation on the full sample. A lower risk aversion leaves the
decomposition of output almost unchanged, but investment shocks become less important
for consumption and more important for wealth inequality. The effect of wage compression
is negligible throughout, with the exception of income inequality, similarly the estimated
systematic response of tax progressivity is weak and thus affects results very little.

While the view of the business cycle is broadly similar between the KPR and GHH
variants, marginal data densities clearly prefer the GHH specification both in RANK and
HANK.31 However, the differences become starker when looking at inequality dynamics. Here,
the KPR-HANK model does not reproduce the U-shape in wealth inequality and misses the
trend in income inequality, which makes the rejection of the KPR assumption by the data
even stronger than the marginal data densities already indicate.

31The (log) marginal data densities for RANK and HANK with KPR preferences are 6555 and 6258,
respectively, both lower than those of the models with GHH preferences (see Table 2). That RANK is
preferred to HANK by the data when assuming KPR preferences also reflects the rejection of wealth effects
on labor supply in the data, which are stronger in HANK.
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6 Conclusion

How much does inequality matter for the business cycle and vice versa? To shed light on this
two-way relationship, this paper develops a new reduction technique and provides a toolbox
to estimate New-Keynesian business cycle models with household heterogeneity and portfolio
choice in its state-space representation via Bayesian methods. Concretely, we leverage the
fact that we have prior information for model reduction and use this to derive a factor
representation of the heterogeneous-agent part of the model. The speed and precision of the
proposed solution method is comparable to sequence-space approaches suggested by Auclert
et al. (2021b) and Boppart et al. (2018). One advantage of the state-space approach lies in
the ample tool set that has been developed for state-space models of the business cycle: for
example, variance decomposition at the business cycle frequency or historical decompositions.

Using the same set of aggregate shocks and observables as in Smets and Wouters (2007)
in the estimation, we find that heterogeneity in household portfolios gives more precedence
to technology shocks in explaining consumption at the expense of markup shocks. They
increase wages of poor households with high marginal propensities to consume, which leads
to more comovement with investment relative to a setup with representative agent. When
including cross-sectional data and shocks in the estimation, shocks to income risk start to
play a role as well—especially for consumption of poor households.

The model successfully replicates the dynamics of US wealth inequality such that there
is no strong tension between what business cycle analysis suggests as drivers of the cycle and
what the model prefers as drivers of wealth inequality. Today’s high inequality is a result of
technology shocks driving up asset prices and markup shocks driving up profits, in line with
empirical evidence from De Loecker and Eeckhout (2020) and Kuhn et al. (2020). However,
some tension remains between the aggregate time series and income inequality dynamics
when it comes to markup shocks. The model predicts that profit incomes and thereby top
incomes are too volatile because fitting the aggregates requires large swings in markups in
relative terms. This leaves room for future research using inequality data to inform researchers
better about the calibration and estimation of the markup process. What is more, we show
that different business cycle shocks impact the percentiles of the consumption distribution
differently such that using detailed data on the consumption distribution dynamics might
also help to tighten the identification of business cycle shocks in future research.
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A Data and parameterization

In this appendix, we first list the data sources and transformations in Appendix A.1 that
we employ in order to calibrate the parameters affecting the stationary distribution and to
estimate via Bayesian methods those parameters that do not. Appendix A.2 then discusses
the re-parameterization of the RANK model steady state. In Appendix A.3, we present the
posterior estimates of the structural shock processes. Appendix A.4 contains the variance
decompositions of observables not shown in the main text. In Appendix A.5, we provide
the credible intervals for all variance decompositions of observables. Appendix A.6 con-
tains historical decompositions of observables and further variables of interest based on the
HANK and HANK-X models, and Appendix A.7 provides IRFs to all structural shocks for
RANK, HANK, and HANK-X. Finally, Appendix A.8 provides convergence diagnostics for
the MCMC chains.

A.1 Data: Sources and transformations

A.1.1 Data for calibration

The following list contains the data sources for the average data ratios we target in the
calibration of the stationary equilibrium:

Mean illiquid assets. Fixed assets (NIPA table 1.1) over quarterly GDP (excluding net
exports; see below), averaged over 1954 – 2019.

Mean liquidity. Liquid assets over illiquid assets, where liquid assets comprise the sum of
checking, savings and call/money market accounts, as well as holdings in mutual funds,
equity and other managed assets, and bonds other than saving bonds from the Survey
of Consumer Finances. We use the SCF+, by Kuhn et al. (2020), which yields 20 years
of cross-sectional data between 1950 and 2016.

Mean government debt. Gross federal debt held by the public as percent of GDP
(FYPUGDA188S). Available from 1954 – 2019.

Fraction of borrowers. Taken from the Survey of Consumer Finances (1983 – 2013); see
Bayer et al. (2019) for more details.

Average top 10 share of wealth. Source is the World Inequality Database (1954 – 2019).
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A.1.2 Data for estimation

Formally, the vector of observable variables is given by:

OBSt =
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where ∆ denotes the temporal difference operator and bars above variables denote time-series
averages.

Unless otherwise noted, all series are available at quarterly frequency from 1954Q3 to
2019Q4 from the St.Louis FED - FRED database (mnemonics in parentheses).

Output, Yt. Sum of gross private domestic investment (GPDI), personal consumption
expenditures for nondurable goods (PCND), durable goods (PCDG), and services
(PCESV), and government consumption expenditures and gross investment (GCE)
divided by the GDP deflator (GDPDEF) and the civilian noninstitutional population
(CNP16OV).

Consumption, Ct. Sum of personal consumption expenditures for nondurable goods
(PCND), durable goods (PCDG), and services (PCESV) divided by the GDP deflator
(GDPDEF) and the civilian noninstitutional population (CNP16OV).

Investment, It. Gross private domestic investment (GPDI) divided by the GDP deflator
(GDPDEF) and the civilian noninstitutional population (CNP16OV).

Real wage, wFt . Hourly compensation in the nonfarm business sector (COMPNFB) divided
by the GDP deflator (GDPDEF).

Hours worked, Nt. Nonfarm business hours worked (COMPNFB) divided by the civilian
noninstitutional population (CNP16OV).
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Inflation, πt. Computed as the log-difference of the GDP deflator (GDPDEF).

Nominal interest rate, Rb
t . Quarterly average of the effective federal funds rate (FED-

FUNDS). From 2009Q1 to 2015Q4, we use the Wu and Xia (2016) shadow federal funds
rate.

Wealth inequality, T10WSharet. p90p100 of US net personal wealth from the World
Inequality Database. Available annually 1954 to 2019.

Income inequality, T10ISharet. p90p100 of US pre-tax national income from the World
Inequality Database. Available annually 1954 to 2019.

Idiosyncratic income risk, st. We take the estimated time series for the variance of id-
iosyncratic income from Bayer et al. (2019) who use the Survey of Income and Program
Participation. Available from 1983Q1 to 2013Q1.

Tax progressivity, τPt . We follow Ferriere and Navarro (2018) and construct our measure
of tax progressivity using the average and average marginal tax rate: P = (AMTR
- ATR)/(1 - ATR). For a loglinear tax system, this measure equals the parameter
capturing the curvature of the tax function. Available annually 1954 to 2017.

Details on the construction of the tax-progressivity measure

We extend the Mertens and Montiel Olea (2018)-calculations of average (ATR) and average
marginal tax rates (AMTR) to the years 2013-2017. First, in constructing the ATR series, we
obtain total tax liabilities for 1929-2017, from the National Income and Product Accounts
(NIPA), Table 3.2. Federal social insurance contributions, which are added to total tax
liability, come from NIPA, Table 3.6, line 3 and 21. For total income, we take Piketty and
Saez (2003)’s income series, which uses a broader income concept based on adjusted gross
income, excluding taxable social security and unemployment insurance benefits.

The AMTR is the sum of the average marginal individual income tax rate (AMIITR) and
the average marginal payroll tax rate (AMPRT). We follow Ferriere and Navarro (2018) and
use Saez (2004)’s income concept.32 This income concept includes all income items reported
on an individual’s tax return before deductions and excluding capital gains. Income items
include salaries and wages, small business/farm income, partnership and fiduciary income,
dividends, interest, rents, royalties and other small items reported as other income. Realized
capital gains are excluded in this measure of income.

32For a detailed explanation on the construction of the AMTRs; see Appendix A of Mertens and Mon-
tiel Olea (2018). We follow method 1 for computing the AMIITRs.
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To construct the AMTR, we first use several tables from the Statistics of Income (SOI)
to construct the discrete distributions of adjusted gross income by income brackets needed
for the AMIITR. Table 1.1 All Returns of the SOI archives contains information on number
of returns, adjusted gross income (AGI), and taxable income for different ranges of AGI per
return. These ranges define the discretization. Given the distribution is fit for every year
and by filing status, Table 1.2 All Returns: by Marital Status provides the equivalent table
distinguishing by filing status, e.g., married filing jointly or separately, head of household,
single, and surviving spouse. Table 1.3 All Returns: Sources of Income provides information
on how many of these returns reported income from salaries and wages. Table 1.4 All Returns:
Sources of Income, Adjustments, and Tax Items contains data on taxable income and number
of corresponding returns by bracket. Table 3.3 All Returns: Tax Liability, Tax Credits, and
Tax Payments provides information on how many filed for self-employment and their tax
liability. Finally, Table 3.4 contains the number of returns and adjusted gross income by
marginal tax bracket and filing status using.

To construct the Average Marginal Payroll Tax Rate (AMPTR), we collect data from
the 2019 Annual Statistical supplement, Table 2.A3 (columns 1, 2, 3 and 9), to obtain the
taxation of labor and self-employed earnings under the Old Age, Survivors and Disability
Insurance (OASDI) and Hospital Insurance (HI) programs. The columns respectively cover
the number of covered workers and self employed with maximum earnings as well as total
taxable earnings. Their difference allows us to calculate the total taxable earnings of covered
workers with earnings below the maximum. Information on earnings can be found in Table
4.B from the same source.
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A.2 RANK calibration

Table A.1 shows the steady-state parameterization of the representative-agent analogue of
the HANK model. We adjust the discount factor to match a capital-to-output ratio of 11.44
(quarterly) and the level of the tax rate to match the ratio of government-spending-to-output
(0.2). All other parameters are externally chosen and equal to the parameterizaton of the
HANK model.

Table A.1: External/calibrated parameters in RANK (quarterly frequency)

Parameter Value Description Target

Households
β 0.996 Discount factor K/Y=11.44
ξ 4.000 Relative risk aversion Kaplan et al. (2018)
γ 2.000 Inverse of Frisch elasticity Chetty et al. (2011)
Firms
α 0.680 Share of labor 62% labor income
δ0 0.018 Depreciation rate 7.0% p.a.
η̄ 11.000 Elasticity of substitution Price markup 10%
ζ̄ 11.000 Elasticity of substitution Wage markup 10%
Government
τ̄L 0.250 Tax rate level G/Y = 0.2
τ̄P 0.120 Tax progressivity SoI 1954 - 2019
R̄b 1.000 Nominal rate Growth ≈ interest rate
π̄ 1.000 Inflation Indexation, w.l.o.g.
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A.3 Estimated structural shock processes

Table A.2 presents prior and posterior distributions of the estimated shock processes. The
RANK and HANK version only include seven standard aggregate shocks, while the HANK-X
version also includes shocks to income risk and tax progressivity.

Table A.2: Prior and posterior distributions of estimated shocks and measurement errors

Prior Posterior

Parameter Distribution Mean Std. Dev. RANK HANK HANK-X

Structural Shocks

ρA Beta 0.50 0.20 0.943 0.943 0.972
(0.917, 0.969) (0.913, 0.970) (0.947, 0.992)

σA Inv.-Gamma 0.10 2.00 0.223 0.223 0.158
(0.178, 0.272) (0.170, 0.275) (0.125, 0.193)

ρZ Beta 0.50 0.20 0.996 0.996 0.998
(0.994, 0.997) (0.994, 0.998) (0.996, 0.999)

σZ Inv.-Gamma 0.10 2.00 0.579 0.628 0.601
(0.529, 0.632) (0.574, 0.685) (0.552, 0.655)

ρΨ Beta 0.50 0.20 0.722 0.663 0.764
(0.669, 0.773) (0.603, 0.721) (0.707, 0.817)

σΨ Inv.-Gamma 0.10 2.00 16.722 12.635 7.211
(13.055, 20.65) (10.465, 15.045) (6.575, 7.924)

ρµ Beta 0.50 0.20 0.963 0.906 0.904
(0.933, 0.988) (0.881, 0.928) (0.877, 0.928)

σµ Inv.-Gamma 0.10 2.00 1.281 1.225 1.351
(1.118, 1.481) (1.083, 1.392) (1.184, 1.545)

ρµw Beta 0.50 0.20 0.892 0.912 0.906
(0.851, 0.927) (0.887, 0.932) (0.878, 0.929)

σµw Inv.-Gamma 0.10 2.00 3.590 3.285 3.506
(3.038, 4.301) (2.871, 3.787) (3.008, 4.098)

σD Inv.-Gamma 0.10 2.00 0.534 0.522 0.376
(0.451, 0.626) (0.434, 0.615) (0.323, 0.433)

ρP Beta 0.50 0.20 — — 0.919
(—, —) (—, —) (0.884, 0.950)

σP Inv.-Gamma 0.10 2.00 — — 6.865
(—, —) (—, —) (5.839, 8.102)

σs Gamma 65.00 30.00 — — 69.186
(—, —) (—, —) (61.41, 77.882)

Measurement Errors

σmeI10 Inv.-Gamma 0.05 0.01 — — 2.418
(—, —) (—, —) (2.057, 2.825)

σmeW10 Inv.-Gamma 0.05 0.01 — — 7.616
(—, —) (—, —) (6.454, 8.951)

Notes: The table displays the estimated shock processes and measurement errors, their priors and posterior
means across three model variants: RANK, HANK, and HANK-X. The 90% credible intervals are shown in
parentheses. Posteriors are obtained by an MCMC method. The standard deviations have been multiplied
by 100 for better readability.
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A.4 Variance decompositions of further observables

Figure A.1 shows the variance decomposition of all observables not shown in the main text
for the estimated models.

Figure A.1: Variance decompositions of further observables

(a) Investment growth (b) Hours worked (c) Wage growth

R
A
N
K

H
A
N
K

H
A
N
K
-X

0 20 40 60 80 100

R
A
N
K

H
A
N
K

H
A
N
K
-X

0 20 40 60 80 100

R
A
N
K

H
A
N
K

H
A
N
K
-X

0 20 40 60 80 100

(d) Policy rate (e) Inflation (f) Income risk

R
A
N
K

H
A
N
K

H
A
N
K
-X

0 20 40 60 80 100

R
A
N
K

H
A
N
K

H
A
N
K
-X

0 20 40 60 80 100

R
A
N
K

H
A
N
K

H
A
N
K
-X

0 20 40 60 80 100

Shock 

■ t fp inv .-spec. tech.

mon. policy ■ structural deficit

■ price markup wage markup ■ risk premium 

■ tax prog. ■ incarne risk

Notes: Variance decompositions at business cycle frequency of all observables not contained in the
main text but used in HANK-X. Income risk is constant in RANK and HANK. Tax progressivity
as an exogenous process is omitted.
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A.5 Credible intervals of variance decompositions

Table A.3 shows the credible intervals of all shown variance decomposition of for the RANK,
the HANK, and the HANK-X model. The credible intervals are obtained by sampling 1000
times from the posterior.

Table A.3: Variance decompositions with credible intervals

tfp inv.-spec. tech. price markup wage markup risk premium mon. policy structural deficit tax progr. income risk

RANK

output growth 14.3 49.6 12.2 17.4 0.9 0.8 4.8 – –
(11.3, 17.2) (45.1, 54.8) (9.7, 15.3) (13.6, 21.0) (0.4, 1.9) (0.5, 1.3) (3.5, 6.3)

consumption growth 28.0 7.6 15.3 37.2 7.6 3.6 0.6 – –
(23.4, 32.8) (5.9, 10.1) (12.5, 18.6) (31.4, 41.7) (5.9, 10.2) (2.7, 5.2) (0.4, 1.0)

investment growth 0.8 95.1 1.2 0.4 0.5 0.1 1.9 – –
(0.5, 1.2) (92.9, 96.5) (0.7, 2.2) (0.2, 0.7) (0.3, 1.0) (0.1, 0.2) (1.4, 2.5)

employment 4.3 28.8 14.7 44.9 3.4 1.5 2.4 – –
(3.4, 5.4) (24.1, 35.0) (11.7, 18.2) (37.9, 50.2) (2.4, 5.0) (1.1, 2.3) (1.9, 3.1)

wage growth 6.6 14.7 41.1 33.1 0.4 0.1 3.9 – –
(4.9, 8.8) (12.1, 19.0) (34.9, 46.7) (26.4, 38.6) (0.2, 1.0) (0.1, 0.5) (2.7, 5.3)

nominal rate 2.6 52.0 3.6 3.1 16.3 13.1 9.3 – –
(1.6, 3.7) (44.3, 59.2) (2.2, 5.9) (2.0, 4.3) (12.8, 20.6) (10.4, 16.6) (5.9, 12.7)

inflation 8.6 38.0 10.6 10.4 18.3 4.3 9.8 – –
(6.5, 10.9) (30.4, 45.6) (7.1, 15.7) (7.7, 12.8) (15.1, 22.3) (3.2, 5.7) (5.9, 14.0)

HANK

output growth 17.1 57.9 7.3 14.2 0.8 0.6 2.1 – –
(14.4, 20.3) (52.9, 62.5) (5.8, 9.2) (11.5, 16.8) (0.4, 1.6) (0.5, 0.9) (1.4, 2.9)

consumption growth 31.5 24.4 13.1 21.9 5.8 2.3 0.9 – –
(27.1, 36.6) (19.8, 28.8) (10.8, 15.6) (17.8, 25.7) (4.4, 7.5) (1.7, 3.2) (0.7, 1.6)

investment growth 1.7 92.9 0.9 0.7 1.3 0.3 2.3 – –
(1.3, 2.3) (91.0, 94.3) (0.6, 1.3) (0.5, 0.9) (0.7, 2.0) (0.2, 0.5) (1.7, 3.0)

employment 5.5 36.5 8.4 43.5 3.1 1.2 1.7 – –
(4.5, 6.9) (30.7, 42.8) (6.7, 10.4) (37.1, 49.4) (2.0, 4.6) (0.9, 1.7) (1.2, 2.4)

wage growth 9.9 19.2 50.9 17.1 0.5 0.1 2.3 – –
(7.7, 12.4) (16.0, 24.0) (45.0, 55.3) (13.6, 21.3) (0.2, 1.0) (0.1, 0.4) (1.5, 3.3)

nominal rate 2.4 42.0 1.4 2.5 22.0 17.7 12.0 – –
(1.4, 3.5) (34.5, 50.0) (0.9, 2.1) (1.6, 3.6) (17.5, 26.9) (13.8, 22.0) (7.0, 17.0)

inflation 8.8 34.0 5.3 8.9 23.2 5.7 14.1 – –
(6.6, 11.0) (27.9, 40.7) (3.8, 7.2) (6.7, 11.3) (18.8, 28.1) (4.3, 7.5) (8.3, 19.9)

HANK-X

output growth 16.0 53.0 10.1 14.8 1.6 1.6 1.8 0.6 0.4
(13.2, 19.2) (48.3, 58.0) (8.2, 12.5) (11.7, 17.7) (1.0, 2.7) (1.2, 2.2) (1.2, 2.6) (0.4, 0.9) (0.3, 0.6)

consumption growth 28.3 17.8 14.0 21.4 5.7 4.1 1.0 0.6 7.2
(23.8, 33.1) (15.1, 21.0) (11.6, 16.4) (17.2, 24.8) (4.5, 7.6) (3.3, 5.2) (0.8, 1.7) (0.4, 0.9) (5.6, 9.1)

investment growth 2.1 89.9 1.9 1.2 1.6 0.7 2.5 0.1 0.1
(1.6, 2.7) (88.0, 91.5) (1.4, 2.5) (0.9, 1.6) (1.0, 2.2) (0.5, 1.0) (1.9, 3.1) (0.0, 0.1) (0.1, 0.1)

employment 5.7 31.4 10.7 42.5 3.1 2.5 1.6 1.8 0.6
(4.7, 7.0) (27.3, 36.4) (8.8, 13.1) (36.7, 46.8) (2.2, 4.4) (2.0, 3.2) (1.1, 2.2) (1.3, 2.6) (0.4, 0.8)

wage growth 8.1 19.7 47.6 20.3 0.9 0.8 1.5 1.0 0.2
(6.4, 10.3) (16.8, 23.5) (42.6, 51.7) (16.3, 24.5) (0.5, 1.7) (0.4, 1.3) (0.9, 2.2) (0.7, 1.4) (0.1, 0.3)

nominal rate 2.5 48.8 2.4 3.5 21.7 14.6 5.5 0.3 0.7
(1.7, 3.5) (41.3, 55.7) (1.6, 3.4) (2.4, 4.7) (17.8, 26.3) (11.6, 18.2) (2.8, 8.7) (0.2, 0.4) (0.5, 1.0)

inflation 8.8 33.2 8.1 11.1 21.9 8.9 6.4 0.7 0.9
(6.8, 11.0) (27.3, 39.4) (5.9, 10.6) (8.6, 13.6) (18.2, 26.4) (7.2, 11.0) (3.4, 9.8) (0.5, 1.0) (0.6, 1.2)

uncertainty 2.5 8.3 1.5 2.4 0.2 0.2 0.3 0.1 84.5
(1.9, 3.4) (6.2, 10.9) (1.0, 2.1) (1.8, 3.2) (0.1, 0.4) (0.1, 0.3) (0.2, 0.4) (0.1, 0.1) (80.3, 87.8)

tax progressivity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
(0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (100.0, 100.0) (0.0, 0.0)

T10 wealth share 1.4 49.6 34.7 1.8 4.6 2.2 1.3 4.1 0.3
(1.0, 2.0) (42.2, 56.3) (29.0, 40.8) (0.8, 3.0) (3.2, 6.9) (1.7, 2.8) (0.8, 1.8) (2.7, 5.9) (0.2, 0.5)

T10 income share 6.4 36.8 33.6 17.4 1.5 0.6 1.2 0.5 1.9
(5.2, 7.8) (30.0, 44.0) (28.1, 38.8) (13.9, 21.7) (1.0, 2.5) (0.4, 0.9) (1.0, 1.7) (0.4, 0.8) (1.4, 2.5)

Notes: The table displays variance decompositions at business cycle frequencies and their (5,95)-credible
intervals for all observables and shocks in the RANK, HANK, and HANK-X models. The credible intervals
are obtained by sampling 1000 times from the posterior.
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A.6 Historical decompositions of further observables

Figure A.2 shows the historical decomposition of all observables for the estimation of the
HANK model and Figures A.3 for the HANK-X model. Figure A.4 shows the historical
decomposition of non-observed variables target markups, profits, and the Top 1 percent
share of income in the HANK-X model.

Figure A.2: Historical decompositions of observables in HANK

(a) Output growth (b) Consumption growth (c) Investment growth

(d) Wage growth (e) Hours worked (f) Policy rate

(e) Inflation

Notes: Historical decompositions of all observables in HANK. Y-axis: Percent deviation from
mean.
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Figure A.3: Historical decompositions of observables in HANK-X

(a) Output growth (b) Consumption growth (c) Investment growth

(d) Wage growth (e) Hours worked (f) Policy rate

(e) Inflation (f) Tax progressivity (g) Income risk

(h) Top 10 income share (i) Top 10 wealth share

Shock 

■ t fp inv .-spec. tech.

mon. policy ■ structural deficit

■ price markup wage markup ■ risk premium 

■ tax prog. ■ incarne risk

Notes: Historical decompositions of all observables in HANK-X. Y-axis: Percent deviation from
mean.
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Figure A.4: Historical decompositions of further variables in HANK-X

(a) Price markup target (b) Wage markup target (c) Profits

(d) Top 1 income share (e) Top 1 wealth share

Notes: Historical decompositions of further unobserved variables in HANK-X. Y-axis: Percent
deviation from mean.

A.7 Impulse Responses

Figures A.5 – A.9 plot the impulse response functions for the estimated RANK, HANK, and
HANK-X model. The first panel on the top left corner of each figure shows the shock and
the remaining panels show the responses of all potential observables.
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Figure A.5: IRFs to structural deficit and monetary policy shocks

Notes: Top: IRF to a structural deficit shock. Bottom: IRF to a monetary policy shock.
Blue-dashed line: RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis:
Percentage points for the nominal rate and inflation, otherwise percent.
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Figure A.6: IRFs to markup shocks

Notes: Top: IRF to a price-markup shock. Bottom: IRF to a wage-markup shock. Blue-dashed
line: RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage
points for the nominal rate and inflation, otherwise percent.
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Figure A.7: IRFs to technology shocks

Notes: Top: IRF to a TFP shock. Bottom: IRF to an MEI shock. Blue-dashed line: RANK; red
dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage points for the nominal
rate and inflation, otherwise percent.
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Figure A.8: IRFs to risk premium and income risk shocks

Notes: Top: IRF to a risk premium shock. Bottom: IRF to an income risk shock. Blue-dashed
line: RANK; red dashed-dotted line: HANK; black solid line: HANK-X. Y-axis: Percentage
points for the nominal rate and inflation, otherwise percent.
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Figure A.9: IRFs to a tax progressivity shock

Notes: IRF to a tax progressivity shock. Blue-dashed line: RANK; red dashed-dotted line:
HANK; black solid line: HANK-X. Y-axis: Percentage points for the nominal rate and inflation,
otherwise percent.
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A.8 MCMC diagnostics

We estimate each model using a single RWMH chain after an extensive mode search. After
burn-in, 400,000 draws from the posterior distribution are used to compute the posterior
statistics. The acceptance rates across chains are between 20% and 30%. Here, we provide
Geweke (1992) convergence statistics for individual parameters of the RANK, HANK, and
HANK-X models as well as traceplots for HANK and HANK-X. Geweke (1992) tests the
equality of means of the first 10% of draws and the last 50% of draws (after burn-in). If
the samples are drawn from the stationary distribution of the chain, the two means are
equal and Geweke’s statistic has an asymptotically standard normal distribution. Table A.4
reports the Geweke z-score statistic and the p-value for each parameter. Taking the evidence
from Geweke (1992) and the traceplot graphs together, we conclude that our chains have
converged.

Table A.4: Geweke (1992) convergence diagnostics

RANK HANK HANK-X
Parameter z-stat p-value z-stat p-value z-stat p-value

δs -0.331 0.741 0.544 0.586 -0.991 0.322
φ -0.044 0.965 0.791 0.429 1.011 0.312
κ -0.623 0.533 0.636 0.525 -0.593 0.553
κw -0.804 0.422 1.302 0.193 0.797 0.425
ιΠ — — -1.639 0.101 -0.121 0.904
ρA -1.465 0.143 -0.374 0.709 -0.509 0.611
σA 1.141 0.254 0.420 0.675 0.340 0.734
ρZ -0.691 0.489 -0.324 0.746 -0.494 0.621
σZ -0.392 0.695 0.507 0.612 -0.023 0.982
ρΨ -1.512 0.130 0.268 0.789 -0.96 0.337
σΨ 0.943 0.346 0.968 0.333 1.107 0.268
ρµ 0.570 0.569 1.053 0.292 0.070 0.945
σµ -0.196 0.845 -1.242 0.214 -1.52 0.128
ρµw 0.200 0.842 0.158 0.875 0.941 0.346
σµw 0.325 0.745 -0.874 0.382 -0.714 0.475
ρs — — — — -0.975 0.329
σs — — — — 0.121 0.904
Σy — — — — -1.056 0.291
ρR 1.037 0.300 0.157 0.875 1.111 0.267
σR -0.567 0.571 0.916 0.360 -0.943 0.346
θπ 1.293 0.196 1.070 0.285 -0.694 0.488
θY 0.422 0.673 -0.429 0.668 1.337 0.181
γB 1.114 0.265 -1.349 0.177 0.026 0.979
γπ -1.19 0.234 -0.839 0.402 -0.718 0.473
γY -1.373 0.170 -0.923 0.356 0.508 0.611
ρD 1.735 0.083 0.352 0.725 0.333 0.740
σD 0.221 0.825 0.549 0.583 -0.582 0.560
ρτ -0.369 0.712 -1.253 0.210 -0.432 0.666
γτB 0.251 0.802 -1.923 0.054 -0.963 0.335
γτY 2.330 0.020 -1.179 0.238 -0.337 0.736
ρP — — — — -1.267 0.205
σP — — — — 0.666 0.505
σmeW10 — — — — 1.064 0.288
σmeI10 — — — — 0.471 0.638

Note: Geweke (1992) equality of means test of the first 10% vs. the last 50% of draws. Failure
to reject the null of equal means indicates convergence.

60



Figure A.10: MCMC draws of HANK model
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Figure A.11: MCMC draws of HANK model
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Figure A.12: MCMC draws of HANK-X model
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Figure A.13: MCMC draws of HANK-X model
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Figure A.14: MCMC draws of HANK-X model
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B Robustness to alternative specifications

We estimate five variants of our model to understand the effect of potentially important data
and modeling choices: 1) sample 1983-2019, 2) risk aversion (2 instead of 4), 3) paying out
union profits proportional to idiosyncratic productivity (no wage compression), 4) systematic
response of tax progressivity to income inequality, 5) King et al. (1988) preferences instead
of Greenwood et al. (1988).

Appendix B.1 provides more details on each variant. Appendix B.2 contains the estimated
parameters, Appendix B.3 the variance decompositions for all variants, and Appendix B.4 the
historical decomposition of income and wealth inequality for the variants with risk aversion
2 and KPR preferences.

B.1 Description of variants

Below we quickly describe the recalibration of the steady state for variants 2) risk aversion,
3) union profits, and 5) KPR preferences. The other two variants, 1) sample split and 4)
fiscal response to inequality, do not require a recalibration of the steady state. The sample
split estimation is run using the same model and calibration as in the baseline. Allowing for a
feedback coefficient of tax progressivity to the top 10 income share only affects the aggregate
model part.

Risk aversion 2

Changing the coefficient of relative risk aversion to 2 (instead of 4) requires a recalibration
of the steady state to match the same targets as listed in Table 1. In particular, we adjust
the discount factor, the asset market participation frequency, the fraction of entrepreneurs,
and the borrowing penalty. The re-calibration yields β = 0.992, λ = 4.5%, ζ = 1/3750, and
R̄ = 2.18%.

Proportional union profits

Paying out union profits proportional to idiosyncratic productivity (instead of lump sum)
affects the steady-state distribution of income and requires a recalibration. Again, we adjust
the discount factor, the asset market participation frequency, the fraction of entrepreneurs,
and the borrowing penalty. The re-calibration yields β = 0.982, λ = 7.0%, ζ = 1/7500, and
R̄ = 1.35%.
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Fiscal response to inequality

We change the policy rule for the tax progressivity parameter, τPt , in HANK-X to the fol-
lowing:

τPt
τ̄P

=

(
τPt−1

τ̄P

)ρ
τP
(
T10ISharet

T10IShare

)(1−ρ
τP

)γτ
P

W

εPt , (B.1)

where the new parameter γτPW captures the response of tax progressivity to income inequality.
Its prior follows a standard normal distribution . We find that tax progressivity does respond
to the top 10 income share with an estimated elasticity of 0.41. In the US, the fiscal authority
responds to higher income inequality by increasing the progressivity of taxes thereby miti-
gating the increase in pre-tax income inequality to post-tax income inequality. However, tax
progressivity is still largerly driven by exogenous shocks εPt as the feedback from inequality
is quantitatively small.

KPR preferences

Changing the preferences to King et al. (1988) preferences (instead of Greenwood et al.
(1988)) also requires the recalibration of the steady state. The felicity function u, additively
separable in consumption and leisure, now reads:

u(cit, nit) =
c1−ξ
it − 1

1− ξ
− γshiftn

1+γ
it − 1

1 + γ
, (B.2)

with risk aversion parameter ξ > 0 and inverse Frisch elasticity γ > 0. The first-order
condition for labor supply is:

nit =

[
1

γshift
u′(c)(1− τ̄P )(1− τLt )(whit)

(1−τ̄P )

]( 1

γ+τ̄P

)
. (B.3)

We recalibrate the steady state to match the capital-to-output ratio, the bonds-to-capital
ratio, the fraction of borrowers, and the top 10 wealth share as reported in Table 1. This
yields a discount factor of β = 0.988, a portfolio adjustment probability of λ = 8.25%, a
borrowing penalty of R̄ = 3.56%, and a probability of becoming an entrepreneur of 1/2000.

B.2 Parameter estimates

Table B.5 displays the estimation results for the model variants. The estimated parameters
are broadly similar across variants with some exceptions. The KPR estimates feature lower
real frictions and a different parameterization of the tax rule.
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Table B.5: Posterior distributions: model variants

Parameter Posterior

HANK (Post-83) HANK (RA2) HANK (Union) HANK-X (Tax) HANK (KPR)

Frictions

δs 1.066 2.431 0.686 0.709 0.188
(0.989, 1.143) (1.835, 3.121) (0.501, 0.891) (0.475, 0.969) (0.090, 0.325)

φ 2.767 3.846 3.758 1.918 0.226
(2.072, 3.467) (2.973, 4.853) (3.118, 4.463) (1.292, 2.603) (0.151, 0.313)

κ 0.085 0.331 0.307 0.156 0.106
(0.060, 0.116) (0.262, 0.412) (0.237, 0.389) (0.120, 0.195) (0.091, 0.123)

κw 0.279 0.584 0.670 0.252 0.324
(0.208, 0.357) (0.449, 0.741) (0.515, 0.851) (0.193, 0.316) (0.247, 0.407)

ιΠ 0.704 0.399 0.506 0.604 0.230
(0.608, 0.799) (0.063, 0.824) (0.139, 0.864) (0.213, 0.919) (0.201, 0.257)

Debt and monetary policy rules

ρR 0.861 0.776 0.774 0.802 0.717
(0.840, 0.880) (0.748, 0.803) (0.746, 0.800) (0.776, 0.827) (0.683, 0.749)

σR 0.138 0.248 0.237 0.232 0.269
(0.123, 0.154) (0.227, 0.271) (0.217, 0.257) (0.213, 0.253) (0.245, 0.297)

θπ 2.967 2.142 1.851 2.081 2.010
(2.670, 3.272) (1.955, 2.341) (1.659, 2.054) (1.845, 2.335) (1.859, 2.173)

θY 0.195 0.192 0.169 0.221 0.344
(0.121, 0.269) (0.123, 0.261) (0.103, 0.236) (0.151, 0.290) (0.284, 0.403)

γB 0.020 0.107 0.058 0.026 0.009
(0.005, 0.042) (0.065, 0.153) (0.015, 0.111) (0.005, 0.060) (0.001, 0.026)

γπ -2.307 -2.96 -3.457 -2.226 -1.808
(-2.642, -2.005) (-3.288, -2.659) (-3.956, -3.008) (-2.482, -1.985) (-1.956, -1.664)

γY -0.635 -0.84 -1.068 -0.494 -0.287
(-0.743, -0.536) (-0.938, -0.746) (-1.251, -0.892) (-0.615, -0.387) (-0.334, -0.244)

ρD 0.970 0.965 0.938 0.970 0.982
(0.941, 0.991) (0.935, 0.988) (0.895, 0.974) (0.933, 0.994) (0.963, 0.995)

σD 0.270 0.516 0.681 0.382 0.313
(0.202, 0.346) (0.438, 0.599) (0.575, 0.803) (0.318, 0.452) (0.279, 0.351)

Tax rules

ρτ 0.394 0.311 0.366 0.464 0.425
(0.263, 0.531) (0.154, 0.457) (0.217, 0.501) (0.294, 0.602) (0.416, 0.434)

γτB 3.114 2.379 2.511 3.384 -0.198
(3.064, 3.166) (1.464, 3.379) (1.531, 3.554) (2.386, 4.470) (-0.218, -0.181)

γτY 0.790 2.252 3.387 -0.148 -0.455
(0.760, 0.819) (2.142, 2.368) (2.264, 4.441) (-1.584, 1.232) (-0.471, -0.441)

ρP — — — 0.921 —
(—, —) (—, —) (—, —) (0.885, 0.950) (—, —)

σP — — — 6.927 —
(—, —) (—, —) (—, —) (5.877, 8.286) (—, —)

γPW — — — 0.407 —
(—, —) (—, —) (—, —) (0.147, 0.659) (—, —)
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Table B.5: Posterior distributions: model variants – continued

Parameter Posterior

HANK (Post-83) HANK (RA2) HANK (Union) HANK-X (Tax) HANK (KPR)

Structural shocks

ρA 0.937 0.915 0.930 0.967 0.938
(0.903, 0.965) (0.881, 0.947) (0.898, 0.961) (0.936, 0.992) (0.923, 0.953)

σA 0.185 0.244 0.228 0.165 0.163
(0.156, 0.218) (0.203, 0.288) (0.168, 0.289) (0.124, 0.207) (0.144, 0.184)

ρZ 0.995 0.991 0.998 0.998 0.906
(0.992, 0.997) (0.988, 0.995) (0.997, 0.999) (0.996, 0.999) (0.891, 0.920)

σZ 0.555 0.588 0.622 0.599 1.598
(0.494, 0.623) (0.545, 0.635) (0.573, 0.675) (0.551, 0.650) (1.456, 1.742)

ρΨ 0.794 0.728 0.599 0.769 0.969
(0.724, 0.854) (0.667, 0.787) (0.518, 0.676) (0.705, 0.830) (0.962, 0.974)

σΨ 6.609 13.588 13.122 7.170 3.250
(5.302, 8.073) (10.987, 16.515) (10.943, 15.505) (5.347, 9.219) (2.814, 3.740)

ρµ 0.824 0.932 0.957 0.908 0.986
(0.767, 0.872) (0.908, 0.956) (0.936, 0.975) (0.882, 0.932) (0.962, 0.998)

σµ 1.756 0.959 0.925 1.302 0.442
(1.426, 2.183) (0.867, 1.062) (0.838, 1.024) (1.144, 1.497) (0.343, 0.587)

ρµw 0.922 0.944 0.963 0.909 0.819
(0.894, 0.944) (0.928, 0.959) (0.947, 0.977) (0.881, 0.933) (0.777, 0.856)

σµw 3.586 2.477 2.363 3.453 2.810
(2.996, 4.318) (2.229, 2.758) (2.142, 2.606) (2.965, 4.051) (2.367, 3.349)

Income risk process

ρs — — — 0.543 —
(—, —) (—, —) (—, —) (0.471, 0.606) (—, —)

σs — — — 68.923 —
(—, —) (—, —) (—, —) (61.172, 77.84) (—, —)

Σy — — — 22.169 —
(—, —) (—, —) (—, —) (22.101, 22.237) (—, —)

Measurement errors

σmeW10 — — — 2.438 —
(—, —) (—, —) (—, —) (2.069, 2.856) (—, —)

σmeI10 — — — 7.701 —
(—, —) (—, —) (—, —) (6.411, 9.154) (—, —)

Notes: The standard deviations of the shocks and measurement errors have been transformed into percentages
by multiplying by 100. HANK (Post-83): HANK model estimated on post-Volcker data only; HANK (RA2):
HANKmodel with risk aversion 2 instead of 4; HANK (Union): HANKmodel in which union profits are payed
out proportionally to idiosyncratic productivity; HANK-X (Tax): HANK-X model with income-inequality
feedback to tax progressivity; HANK (KPR): HANK model with KPR instead of GHH preferences. For more
details see text.
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B.3 Variance decompositions

Figure B.15 shows that the variance decompositions are similar across all variants. Shocks
to investment specific technology are by far the most important driver of output growth
(explaining 40-60%), followed with some distance by shocks to TFP and wage markups. The
same three shocks are prominent in consumption growth but of more equal importance and
with TFP being the most important one. The variance decompositions of top 10 wealth and
income shares are also quite similar. The outliers are KPR preferences and risk aversion
2. The former variant finds a larger role for TFP shocks in explaining inequality, while the
latter finds a larger role for investment specific technology shocks.
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Figure B.15: Variance decompositions: Output and consumption growth
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Notes: Conditional variance decompositions at business cycle frequencies (6-32 quarter fore-
cast horizon) for the baseline and the estimated variants 1) sample 1983-2019, 2) risk aversion
2, 3) proportional union profits, 4) fiscal policy reacts to inequality, 5) KPR preferences.
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Figure B.16: Historical decompositions: Inequality

Top 10 wealth share Top 10 income share

Notes: Kalman smoother in comparison to the data for the top 10 wealth and income shares
for the baseline and the estimated variants risk aversion 2 and KPR. Y-axis: Percent deviation
from mean.

B.4 Historical decomposition of inequality

Figure B.16 shows the historical decomposition of inequality for these two variants, KPR and
risk aversion 2, that differ most from the baseline in the previous section. Estimating the
model with risk aversion 2 does not affect the implied time path of the top 10 income and
wealth shares much. KPR preferences, however, do change the estimated results. Wealth
inequality is now rising throughout the whole period, missing the U-shape. While income
inequality is too high from 1970-2010 and too low afterwards such that the top 10 income
share does not display a significant trend over the whole sample.
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C Further details on the solution technique

C.1 Deviations of functionals from steady state

Our solution technique, following Reiter (2009), is based on writing the sequential equilibrium
as a non-linear difference equation in function space. For this purpose, we write the marginal
value functions, ∂Wt

∂b
and ∂Wt

∂k
, as a sum of the stationary equilibrium function, W̄b/k, and time-

t deviations thereof, Ŵb/k,t. Since we work with Young’s 2010 formulation of off-grid policies
as fair gambles between grid points, we represent all functions as linear interpolants based on
a set of node values for the full tensor grid of b, k, h. However, we represent the nodal values by
their DCT coefficients, that is by the coefficients, θp,q,r, of Chebychev polynomials, Tp/q/r(·),
where we assume that the grid nodes were transformed to the corresponding Chebychev
nodes:

Ŵb/k,t(bi, kj, hl) =
∑
p,q,r

θp,q,rWb/k,t
Tp(i)Tq(j)Tr(l). (C.1)

The advantage of this formulation is that we can read off from the stationary equilibrium
solution, which sparse polynomial would have been a good approximation to the non-sparse
solution by comparing the absolute values of θp,q,r. One way to do this is to look at the
function values in the stationary distribution and fit the polynomials. If we had restricted the
stationary equilibrium solution to the sparse polynomial class that forces the small coefficients
to zero, then the solution would not have changed much. While we do not enforce this
restriction in calculating W̄b/k, we use it to select a baseline set of polynomials, i.e., the
coefficients θp,q,r in (C.1), to be perturbed when we linearize the system.

In addition, we can use the envelop theorem, to calculate recursively the response of
the value functions (or derivatives thereof) to a change in an expected future price Pt+h.
Assuming that we wrote the problem such that prices do only show up contemporaneously
in the Bellman equation, we have for h > 0:

∂Wt

∂Pt+h
=

(
∂u

∂xt+1

+ βΓ
∂Wt+1

∂xt+1

)
∂xt+1

∂Pt+h
+ βΓ

∂Wt+1

∂Pt+h
, (C.2)

where Γ is the transition matrix induced by stationary equilibrium policies and income shocks
(i.e., it includes the expectations operator). Here, xt+1 are the endogenous idiosyncratic
states. Importantly, the sum of the first two terms is zero when the choice of xt+1 is not
constrained because the borrowing constraint does not bind. When it binds, however, ∂xt+1

∂Pt+h
=

0. This implies that the product of the two terms is always zero and we can write ∂Wt

∂Pt+h
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recursively as
∂Wt

∂Pt+h
= βhΓh

∂Wt

∂Pt︸︷︷︸
=:wP

. (C.3)

Selecting polynomial terms on the basis of how well they allow to describe the response of the
value function to price changes, wP , helps to obtain a good approximation of the planning
problem with a sparse polynomial basis.

For the distribution function, we extend the approach of Bayer and Luetticke (2020).
Again following Young (2010), we write the distribution function in terms of its histogram
over the discrete nodes b, k, h. We then re-interpret this histogram as the histogram of its
copula (i.e., the joint-distribution of marginal probabilities) by translating the axes from the
b, k, h space to the space of the marginal distributions F b

t , F
k
t , F

h
t . This allows us to split the

joint distribution of b, k, h into three separate objects: First, marginal distributions at time
t, second the copula in the stationary equilibrium C̄(F b

i,t, F
k
j,t, F

h
l,t), at the grid points of b, k, h

with indices i, j, l evaluated at these marginals and, third, deviations of the copula, Ĉt.
The advantage of this splitting the distribution into three objects is that we can work

with different degrees of precision for the different objects. Again, we write all functionals as
linear interpolants over a set of nodal values. The nodal values of C̄ are simply given by the
stationary distribution. This means, we define the node grid {F b

i , F
k
j , F

h
l } in line with the

stationary marginal distributions over the b, k, and h grid, respectively.
The deviation of the copula is again given by a linear interpolant of the pdf dĈ over nodal

values represented by a discrete-cosine transform that uses a subset of the nodal grid of C̄:

dĈt(F
b
i , F

k
j , F

h
l ) =

∑
p,q,r

θp,q,rC,t Tp(i)Tq(j)Tr(l). (C.4)

A sparser grid for Ĉ implies that we need to perturb less coefficients. Working with the
DCT-transformation on top, allows us to easily formulate the constraints that are posed
by making sure that the combined copula C̄ + Ĉ remains a copula (fulfills the restrictions
on partial integrals). This constraint translates into parameter restrictions on θp,q,rC , where
θp,q,rC = 0 for p = q = 1, q = r = 1, or p = r = 1. This restriction ensures that

∫
dCt = 0

and reflects that
∑

s Ts(m) = 0 for s > 1 where m is the Chebychev node index. We do not
restrict the perturbed coefficients any further than this before running the second-step model
reduction.
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C.2 Intuition for the possibility of a strong model reduction

The procedure above gives us the first-stage model reduction. It is based only on objects
calculated from the stationary equilibrium. While this renders solving for a sequential equlib-
rium feasible, because the model becomes sufficiently small in terms of the number of vari-
ables involved, this number is still large and would thus yield long estimation times. Our
second-stage model reduction leverages the Bayesian setup, using prior knowledge about the
dynamics to derive a factor representation of the idiosyncratic model part. We find that it
reduces the model dramatically in the number of variables, making estimation feasible.

To gain some intuition for why such strong further model reduction is possible, it is useful
to draw insights from the sequence-space solution techniques (Auclert et al., 2021b). The
key idea, which sequence-space techniques leverage, is that the household’s decision problem
depends only on the expected sequence of a small set of “prices” Pt.33

The sequence-space method assumes that it is possible to approximate the impact of a
shock by a finite T period sequence of prices. Given this assumption, we know that we can
write the equilibrium sequence of prices as an impulse response

EtdPt+h = Φhεt. (C.5)

Stability requires that limh→∞Φh = 0 and if the sequence-space solution is exact at horizon
T , Φh ≈ 0 ∀h ≥ T .

If we now consider infinitesimally small shocks, we can write the deviations of the value
functions (in a total differential notation) as

dWt = Et
T∑
h=0

∂Wt

∂Pt+h
dPt+h = Et

T∑
h=0

(βΓ)hwPdPt+h =
T∑
s=0

T−s∑
h=0

(βΓ)hwPΦs+h︸ ︷︷ ︸
=:Cs

εt−s. (C.6)

The second equality uses the envelope result from (C.3). This implies for the variance co-
variance of deviations in the value functions:

EdWtdW′t =
[
C0 · · · CT

]
Σε · · · 0

0
. . . 0

0 · · · Σε



C ′0
...
C ′T

 =
T∑
s=0

CsΣεC
′
s (C.7)

The rank of the sum of matrices is bounded from above by T × J , where J is the number
33These are: level and progressivity of taxes, income risk, wage rate, real interest rate on liquid assets,

price of capital, return on capital, entrepreneurial profits, and union profits; see equation (36) for example.
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of shocks. This means that, under the assumption that a T -period approximation is good
enough (for a sequence-space solution), there are at most T ×J factors in the value functions.
This upper bound is, however, too loose: The matrices Cs shrink in s towards zero because
of discounting in the planning problem, lims→∞ β

s = 0, and the stability of the price process,
limh→∞Φh = 0. What is more, the convergence of Γs also implies that Cs become, in some
sense, more similar when s increases. This effectively means that Cs converges more quickly
to zero than Φs or βs alone and the sum (C.7) can be approximated well using a smaller T .

Similarly, the change in distribution is accumulated from up to T periods back. This
accumulation involves effects of past prices and expectations about future prices. Whenever
prices or their expectations change in period t − h, the transition matrix in that period
Γt−h changes. These changes, as they are infinitesimal in a first-order approximation, get
accumulated through the stationary equilibrium transition matrix Γ in the following way:

dΘt =
T∑
h=0

Γh
′
dΓ′t−hΘ̄ =

T∑
h=0

Γh
′
[
∂Γ′Θ̄

∂P
dPt−h +

∂Γ′Θ̄

∂W+1

Et−hdWt−h+1

]

=
T∑
h=0

Γh
′
[
∂Γ′Θ̄

∂P

T∑
j=0

Φjεt−h−j +
∂Γ′Θ̄

∂W+1

T∑
j=0

Cj+1εt−h−j

]

=
T∑
h=0

T∑
j=0

Γh
′
[
∂Γ′Θ̄

∂P
Φj +

∂Γ′Θ̄

∂W+1

Cj+1

]
εt−h−j

=
2T∑
s=0

s∑
h=0

s−h∑
j=0

Γh
′
[
∂Γ′Θ̄

∂P
Φj +

∂Γ′Θ̄

∂W+1

Cj+1

]
εt−s =

2T∑
s=0

Dsεt−s,

(C.8)

where ∂W+1 denotes the derivative with respect to the continuation value.
As before the stability of the price process adds to the convergence, but now the variance

of the distribution accumulates twice as many variance covariance matrices. What is more,
Ds for low s accumulates more terms and thus does converge to zero as fast as Cs does. Here,
the key role for convergence lies in Γh converging against a matrix with identical rows, Θ̄, and
the fact that when summing over grid points

∑
∂Γ′Θ̄
∂P

=
∑

∂Γ′Θ̄
∂W+1

= 0 because the total mass
of the distribution cannot change. Overall, we can expect the variance covariance matrix of
the distribution to have a rank that is below the number of grid points, at most 2T × J , but
larger than the one of the value functions.

C.3 Intuition for local invariance of model reduction

What is important, in both (C.7) and (C.8) the parameters we estimate only enter through
their effect on price dynamics Φh. They affect neither the stationary equilibrium transition
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matrix Γ, nor the response of the value functions to price changes wP , and they also have no
effect on how the optimal household policy responds to price or continuation value changes,
∂Γ′Θ̄
∂Pt

and ∂Γ′Θ̄
∂W+1

.
While the price dynamics changes in parameters, the changes are bounded. The priors,

the model structure, and the data impose a restriction on how much the price process (C.5)
changes between two likelihood evaluations. This implies that an ideal reduction basis under
some parameters will remain good in their vicinity.

Another way to express this can be obtained by rewriting the linearized difference equation
(42). As above we define objects in a way such that only contemporaneous prices enter the
value functions, such that BfX , BXf = 0 holds.34 What is more, Bff is typically invertible.35

This implies that we can write the model as:[
B−1
ff Aff B−1

ff AfX

AXf AXX

]
︸ ︷︷ ︸

:=Ã

[
ft

Xt

]
= −Et

[
ft+1

BXXXt+1

]
, (C.9)

to obtain the equivalent formulation:[
Ãff ÃfX

ÃXf ÃXX

][
ft

Xt

]
= −Et

[
ft+1

BXXXt+1

]
. (C.10)

Applying a singular value decomposition on Ãff , the idiosyncratic to idiosyncratic feedback
matrix that does not depend on any of the estimated parameters, we can rewrite the system
as: [

UΣV ′ ÃfX

ÃXf ÃXX

][
ft

Xt

]
= −Et

[
ft+1

BXXXt+1

]
, (C.11)

and invoke the Eckart-Young-Mirsky theorem to reduce the system in a first step toV ′U
[

Σ1 0

0 0

]
V ′ÃfX

ÃXfV ÃXX

[V ′ft
Xt

]
≈ −Et

[
V ′ft+1

BXXXt+1

]
, (C.12)

34BXf = 0 holds because the distribution only directly affects summary variables at t but no variables at
t + 1. The policy functions only affect the distribution. To obtain BfX = 0 one needs to write the model
such that only prices with a time-index t show up in the household’s problem and all time t + 1 prices are
implicitly captured by the continuation value/time t+ 1 policy functions.

35The matrix Bff has a block tridiagonal structure, where the derivative of the discrete time Fokker-Planck
equation Θ′t+1 − Γ′Θ′t = 0 with respect to Θt+1 is unity. The derivatives with respect to continuation values

W+1 of the Bellman equation is βΓ, while it is ∂
∂W+1

(
Γ′Θ̄′

)
=
[∑

h Θ̄h
∂Γh,i
∂Wj,+1

]
i,j=1...n

for the Fokker-Planck

equation.
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where only the largest singular values Σ1 are retained and it becomes sufficient to solve the
reduced system [

V ′1UΣ1 V ′1ÃfX

ÃXfV1 ÃXX

][
Yt

Xt

]
≈ −Et

[
Yt+1

BXXXt+1

]
, (C.13)

where V1 refers to the rows in V that correspond to the largest singular values.
This means that a large component of the actual model reduction is strictly independent

of the estimated parameters. The actual model reduction goes beyond the singular value
decomposition above, and for that reason, needs to be updated very infrequently during the
estimation procedure.

This first stage reduction is necessary despite this result because an unreduced system
would have a too large matrix Ãff to perform the SVD. In our application this matrix would
have 660, 0002 entries.

C.4 Direct IRF comparison across solution techniques

Figures C.17 to C.20 compare the impulse responses of the observables used in the estimation
of the HANK model obtained from our solution method to those obtained from a sequence-
space method assuming a 300 period transition. The terminal values are assumed to be given
by the state-space solution instead of the stationary equilibrium. The figures are organized
by observable variables and show the responses to the various shocks in one figure. Figures
C.21 to C.26 repeat this exercise for the HANK-X estimates.

The figures show that the differences in the IRFs are almost zero. What the IRFs also show
is that the TFP shock leads to a persistent change in the capital stock (which can be seen in
the persistent increase of employment). We also compared the sequence space solution with
a 300 period transition to itself using the state-space solution as terminal outcome and the
stationary equilibrium. Given the persistent change in the capital stock after a TFP shock,
a 300 periods transition is not a good approximation and we find that the approximation
error between the two solutions is for persistent variables more than one order of magnitude
larger than between sequence and state-space solution. Results are available upon request.
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Figure C.17: Comparison of IRFs across solution methods (HANK model)

Notes: The figure shows the impulse response to the various shocks in the HANK model, com-
paring a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.18: Comparison of IRFs across solution methods (HANK model)

Notes: The figure shows the impulse response to the various shocks in the HANK model, com-
paring a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.19: Comparison of IRFs across solution methods (HANK model)

Notes: The figure shows the impulse response to the various shocks in the HANK model, com-
paring a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.20: Comparison of IRFs across solution methods (HANK model)

Notes: The figure shows the impulse response to the various shocks in the HANK model, com-
paring a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.21: Comparison of IRFs across solution methods (HANK-X model)

Notes: The figure shows the impulse response to the various shocks in the HANK-X model,
comparing a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.22: Comparison of IRFs across solution methods (HANK-X model)

Notes: The figure shows the impulse response to the various shocks in the HANK-X model,
comparing a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.23: Comparison of IRFs across solution methods (HANK-X model)

Notes: The figure shows the impulse response to the various shocks in the HANK-X model,
comparing a sequence-space solution (red dashed line) to our state-space solution (blue solid).

85



Figure C.24: Comparison of IRFs across solution methods (HANK-X model)

Notes: The figure shows the impulse response to the various shocks in the HANK-X model,
comparing a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.25: Comparison of IRFs across solution methods (HANK-X model)

Notes: The figure shows the impulse response to the various shocks in the HANK-X model,
comparing a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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Figure C.26: Comparison of IRFs across solution methods (HANK-X model)

Notes: The figure shows the impulse response to the various shocks in the HANK-X model,
comparing a sequence-space solution (red dashed line) to our state-space solution (blue solid).
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