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Abstract
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1 Introduction

A large class of heterogeneous agent models has the evolution of the distribution of
agents at its core. In this paper, we propose a novel method for implementing this
evolution. Our method exploits the fact that policy functions in many such models are
monotone. This allows us to express the evolution of the distribution without relying on
either linearized mappings (Young, 2010; Reiter, 2009) or full integration (Krusell and
Smith, 1998). Instead, we extend the idea of endogenous gridpoints (Carroll, 2006) to
distributional dynamics.

We show that our distributional endogenous gridpoint method, henceforth DEGM,
is as fast and tractable as the “histogram method” proposed by (Young, 2010), which
has become the standard in the literature. We also show that our method converges
faster in the number of gridpoints even when solving for the steady state and studying
linear dynamics. Importantly, it preserves nonlinearities and is thus suitable for higher
order perturbation solutions of macroeconomic models with heterogeneous agents.

We illustrate our method with two applications. We start with the Aiyagari (1994)
economy and document the numerical efficiency gains over the histogram method when
solving for stationary distributions. Both methods converge to the same solution as the
number of gridpoints increases, but DEGM reaches this limit an order of magnitude
faster. Our method works directly on the cumulative distribution function, parsimo-
niously capturing its curvature through shape preserving interpolation. Importantly,
updating the distribution function is not costly because the novel endogenous gridpoint
approach works without integration.

We then propose a Krusell and Smith (1998) model with investment risk (deprecia-
tion shocks) as a new baseline model for studying aggregate nonlinearities with household
heterogeneity. This overcomes the approximate linearity in aggregate capital of the orig-
inal Krusell and Smith (1998) model while still being as parsimonious. We extend higher
order perturbation techniques to heterogeneous agent models, following Andreasen et al.
(2018) and Levintal (2017). We solve our model up to third order and study asymmetric
investment risk calibrated as in Barro (2006).

For first order perturbations, DEGM gives the same solution as the histogram
method in the limit, but again converges to the true impulse responses faster in terms
of the number of gridpoints. However, there is a significant difference for higher order
perturbations, where the histogram method does not capture all nonlinear effects, con-
sistent with Bhandari et al. (2023). The histogram method overstates the aggregate
and distributional responses to shocks. However, it understates the long-run aggregate
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and distributional consequences of the presence of investment risk. Using a third-order
perturbation solution with DEGM, we find that the presence of aggregate investment
risk hollows out the middle class and increases wealth inequality by 12%.

Our method is directly implementable in the established sequence and state-space
approaches for solving heterogeneous agent models with aggregate shocks (Auclert et al.,
2021; Bayer et al., 2024). The idea of approximating the cumulative distribution function
can also be found in the special issue Den Haan et al. (2010). Our reformulation with an
endogenous grid approach makes it tractable and fast. The parsimonious representation
of nonlinear distribution dynamics is key for higher order perturbations.

The rest of the paper is organized as follows: Section 2 describes the distributional
dynamics in terms of a difference equation of the distribution and policy functions, and
presents our proposed method for solving this equation. Section 3 applies the method
to the solution of an Aiyagari (1994) economy. Section 4 then uses an up to third order
perturbation solution to the dynamic version of this economy with capital depreciation
shocks as the source of aggregate risk. Section 5 concludes.

2 Problem and Method

Consider an economy in discrete time with a distribution of agents (of mass 1) over
two variables a and y. We assume that y follows an exogenous discrete Markov process
with transition probability matrix Π and set of states {Yj}. The continuous endogenous
variable a is determined by the agent’s policy function a∗(a, y), which we assume to be
strictly monotone in a (or composed of a constant part and strictly monotone part).1

The cumulative joint distribution (in a) at time t is given by Ft(a, y) := P (x ≤ a, z = y),
where ft(a, y) is the density (continuous in the a dimension, discrete in the y dimension).

2.1 Distributional Dynamics in Discrete Time

The evolution of the distribution F is then given by the time discrete Kolmogorov forward
equation:

Ft+1(a
′, y′) =

∑
j

∫
{x|a′≥a∗(x,Yj)}

ft(x,Yj)dx Π(Yj , y
′). (1)

A brute force approach to solving the equation for Ft+1 would therefore require an
integral approximation. This is computationally expensive. Originally, economists often
used Monte Carlo methods to solve the Equation (1). To avoid this, Young (2010)

1This is the standard case in many economic models, see Carroll (2006).
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suggests replacing the continuous distribution in a with a discrete counterpart, what is
commonly referred to as histogram method. This has a density given by the vector f̂ .
One then replaces the policy function a∗(a, y) by lotteries, so that the transition along
both the a and y dimensions can be summarized by a single matrix A∗. This gives the
discretized stacked Kolmogorov forward equation:

f̂t+1 = f̂tA
∗. (2)

While this allows to solve f̂t very fast, it not only creates an approximation error due
to discretizing a continuous density, but also forces the Equation (2) to be linear in the
optimal policies a∗.

2.2 An Endogenous Gridpoint Method for Distributional Dynamics

Instead, we propose to use an endogenous gridpoint method analogous to the one pro-
posed by Carroll (2006). To do so, we divide each period into two subperiods, a first
one related to asset choices and a second one related to income changes. Consequently,
we define the distribution at the end of period t, after asset choices but before income
transitions, as

F̃t(a
′,Yj) :=

∫
{x|a′≥a∗(x,Yj)} ft(x,Yj)dx, (3)

such that we obtain the asset-income distribution at the beginning of period t + 1, i.e.
after income transitions, as

Ft+1(a
′, y′) =

∑
j F̃t(a

′,Yj) Π(Yj , y
′). (4)

With these objects at hand, we first consider the case where a∗(·,Yj) is strictly
monotone everywhere and thus invertible. Now we consider the endogenous gridpoints
a′ = a∗(a,Yj). For these points, the set over which we integrate simplifies to {x|a′ ≥
a∗(x,Yj)} = {x|a∗(a,Yj) ≥ a∗(x,Yj)} = {x|a ≥ x}, where the last equation results from
the invertibility of a∗, given Yj . This, together with the definition of Ft, again implies
that F̃t(a

∗(a,Yj),Yj) = Ft(a,Yj).
We now specify a grid Ai for a and compute the associated policies A∗

i,j when y = Yj .
With these objects we know that the set

{(
A∗

i,j , Ft(Ai,Yj)
)}

is on the graph of F̃t. This

then allows us to construct an interpolant ˆ̃Ft for each Yj , since A∗
i,j is an ordered set, as

a∗ is strictly monotone. Replacing F̃t by ˆ̃Ft in (4) then allows to evaluate Ft+1 at any a′
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without integration. Finally, the definition of a cumulative distribution function implies
two extrapolation rules. First, ˆ̃Ft is set to zero for any a′ < min

{
A∗

i,j

}
. These are future

endogenous states that are lower than the smallest optimal policy and hence are never
reached. Second, ˆ̃Ft is set to Ft(∞,Yj) = P (y = Yj) for all a′ > max

{
A∗

i,j

}
. The largest

optimal policy is lower than these future endogenous states and hence the probability
to observe an agent with a lower than this endogenous state and income Yj is equal
to just observing said income. However, when a∗ is a savings function, for example,
it is typically only weakly monotone. It has a constant initial part at the borrowing
constraint and is strictly monotone, for a given Yj , for a greater than some threshold of
asset holdings aj . Our method can be easily adapted to account for this. Simply make
the grid Ai start at aj to restore strict monotonicity. Because of weak monotonicity,
and because we are working with cumulative distributions, evaluating Ft(aj ,Yj) gives
the mass point at the borrowing constraint.

Figure 1: Illustration of Interpolation over Endogenous Grid
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2.3 The Algorithm in a Nutshell

To provide a practical guide to implementation, we conclude with a summary of the
proposed algorithm, assuming that the dynamic programming problem leading to the
policy function is solved w.l.o.g. on the grid {Ai}. This means that

{
A∗

i,j

}
is readily

available as a discretized representation of the policy function.

Algorithm 1. Start with the cumulative joint distribution (in a) at time t given by
Ft(a, y) := P (x ≤ a, z = y) that is discretized on the grids {Ai}, {Yj}, see Figure 1 (a).
The following assumes the values of this are stored in the matrix Ft = [Ft(Ai,Yj)]

j
i .

1. For each exogenous state with index j, y = Yj, create the interpolant ˆ̃F j
t .

(a) Find aj in the set {Ai}, i.e. find the last endogenous state for which the policy
a∗ is a constant.

(b) Discard all gridpoints below aj from the set {Ai} and all corresponding choices
from the set

{
A∗

i,j

}
and find the set of according points on the graph of F̃ j

t :

G :=
{(

A∗
i,j ,Ft(i, j)

)}
, see Figure 1 (b).

(c) Create an interpolant ˆ̃F j
t based on the set G, see Figure 1 (c).

2. Loop through all i, j to evaluate the interpolant for each Ai from the fixed grid
{Ai} and each Yj ∈ {Yj} to calculate:

ˆ̃Ft(i, j) =


0 if Ai < min

{
A∗

i,j

}
Ft(end, j) if Ai > max

{
A∗

i,j

}
ˆ̃F j
t (Ai) else

and collect this in a matrix ˆ̃Ft. This yields the CDF in a on the fixed grid {Ai}
prior to the exogenous Markov transitions, see Figure 1 (d).

3. Apply the exogenous Markov transition matrix Π to obtain Ft+1 as:

Ft+1 =
ˆ̃FtΠ

′

Practical implementation requires the choice of an interpolant. Since cumulative
distribution functions are monotone, it is advisable to use an interpolation routine that
preserves monotonicity. Both linear interpolation and piecewise cubic hermitian splines
have this property. However, the linear interpolant does not preserve differentiability
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everywhere. Note that the linear interpolant is not equivalent to the histogram method,
since we interpolate the CDF with optimal policy choices being the interpolation nodes.2

2.4 Nonlinear Distributional Dynamics

Bhandari et al. (2023) have highlighted the fact that the histogram method fails to fully
capture the nonlinear dynamics of the distribution. Returning to Equation (3), the
nonlinear effects of the distribution ft on its transition dynamics derive entirely from its
effect on the optimal policy function a∗.3 This is because, holding the policy function
constant, the transition is a linear operator.

We can thus sufficiently characterize the missing nonlinearities of the histogram
method by analyzing the effects of changes in the optimal policy function. Let them
be caused by some generic perturbation Dt, for example, aggregate shocks or changes
in the mean of the distribution. The second order derivative of the transition matrix
A∗(k, l) of the Kolmogorov forward equation to such a shock is generally composed of
two terms and is given by

∂A∗(k, l)

∂a∗k

∂2a∗k
∂D2

t

+
∂2A∗(k, l)

∂a∗2k

[
∂a∗k
∂Dt

]2
, (5)

where a∗k denotes the optimal policy at wealth level Ak. The first effect captures the
direct nonlinearity of the policy function. The second effect reflects that the Kolmogorov
forward equation is in principle nonlinear in policies. However, the histogram method
constructs A∗ as (ignoring the exogenous state transitions for simplicity of notation)

A∗(k, l) =


1− a∗k−Al

Al+1−Al
if a∗k ∈ [Al,Al+1)

a∗k−Al−1

Al−Al−1
if a∗k ∈ [Al−1,Al)

0 else,

(6)

which is linear in a∗. Therefore ∂2

∂a∗2k
A∗(k, l) = 0. In Appendix A, we extend this analysis

to the third order derivative of Equation (3).
Our method, on the other hand, can capture all nonlinearities up to the order of

the splines used to interpolate the CDF. Again, the second-order derivative, now of our
2See Appendix A.1 for details.
3The effect of the distribution on the policy function works through a market clearing condition,

where higher aggregate demand for an asset, say, increases the market price.
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interpolant ˆ̃F j
t (Ai), has the general form:

∂2 ˆ̃Ft(i, j)

∂D2
t

=
∂ ˆ̃Ft(i, j)

∂A∗
.j

∂2A∗
.j

∂D2
t

+

[
∂A∗

.j

∂Dt

]′
∂2 ˆ̃Ft(i, j)

∂A∗
.j
2

[
∂A∗

.j

∂Dt

]
, (7)

where, unlike (5), the second term is nonzero because A∗
.j are the vectors of the inter-

polation nodes (and the derivatives are vector-valued). Therefore, the Hessian ∂2 ˆ̃Ft(i,j)

∂A∗
.j

2

is generally nonzero. As also described in Bhandari et al. (2023), the second term in
Equation (7) reflects second-order responses of the distributional dynamics to first-order
changes in the optimal policy. What is more, if the continuous distribution has cur-
vature at these pre-images, A∗

.j , approximation of ∂2 ˆ̃Ft(i,j)

∂A∗
.j

2 requires a shape-preserving

interpolation method, as illustrated in Figure 1 using cubic splines.4

3 Solving Stationary Distributions

Our first application is the solution of an Aiyagari (1994) economy, where Equation (1)
takes the special form of Ft = F ∀t as an equilibrium condition. Specifically, we consider
an economy with a continuum of households facing idiosyncratic risk in their human
capital, ht, which they rent out to firms at the wage rate, wt. Households can self-insure
by accumulating non-negative amounts of capital, kt, which they rent out to firms at
rate rt. Capital depreciates at the rate δt. Human capital can take two values h, h and
transitions follow the matrix Πh. Households enjoy utility from consumption, ct, and
solve the dynamic program:

max
{ct,kt+1}∞t=0

E
∞∑
t=0

βtu(ct) (8)

s.t. ct + kt+1 = (1 + rt − δt) kt + htwt (9)

kt+1 ≥ 0. (10)

The wage and capital rates are given by the marginal products of labor and capital,
respectively, where the production function is given by:

Yt = Kα
t N

1−α, (11)

where N is the total amount of human capital supplied by households.

4Appendix B shows that the continuous limit counterpart to ∂2 ˆ̃Ft(i,j)

∂A∗
.j

2 is typically non-zero.
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Table 1: Calibration

Parameters Value Parameters Value

β Discount factor 0.99 nk Gridpoints for k 500
γ Rel. risk aversion 2 nh Gridpoints for h 2
α Capital share 0.36

Πh Transition prob.
[

0.6 0.4
0.045 0.956

]
δ Depreciation rate 0.02

We search for an equilibrium in which prices are constant such that households form
optimal policies given r, w, δ. These optimal policies are continuous choices of kt+1.
They depend on the continuous endogenous state kt and the discrete exogenous state
ht. It is easy to show that for strictly concave felicity functions u(c) the optimal policies
are weakly monotone in kt and strictly monotone outside the borrowing constraint. The
problem therefore fits Section 2.

We use this workhorse model as a laboratory to present our novel method and com-
pare it to the widely used histogram method. To do so, we follow the calibration idea
of Den Haan et al. (2010), see Table 1. Conceptually, DEGM involves iterating on the
cumulative distribution function to find the stationary distribution.5 We solve the model
for nk = 500 gridpoints in capital k. As a baseline, we use our novel method to find
the equilibrium. Going beyond 500 gridpoints had no effect on the equilibrium, so we
consider the distribution at 500 gridpoints to be the “true” distribution.6

We perform two exercises. First, we isolate the quality of the approximation of the
distribution by keeping prices and optimal policies fixed at the benchmark solution.
We select a subset of gridpoints from this solution and iterate on the distribution until
convergence for both the histogram method and our DEGM.7 Second, we solve for the
stationary equilibrium, including prices and policies, which more closely resembles the
actual use case. The histogram method finds the stationary distribution via eigende-
composition, while our method uses iteration. For the first exercise, we use the uniform
distribution as a starting guess, which we update for the second exercise in each iteration
on the equilibrium prices with the last converged distribution.

Table 2 shows the distance of two moments of the stationary distribution, average
capital holdings and the Gini coefficient of capital holdings, for 50, 100, and 250 grid-
points relative to the baseline solution using DEGM with 500 gridpoints for capital.

5We compute the aggregate capital stock as E[X] = b · F (b)− a · F (a)−
∫ b

a
F (x) dx.

6Beyond 500 gridpoints, the difference between the two methods in their solution of the stationary
equilibrium becomes negligible.

7We use piecewise cubic hermitian splines to interpolate the cumulative distribution function.
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Table 2: Convergence under the histogram method and DEGM

Histogram DEGM

nk= 50 100 250 50 100 250

Panel A: Stationary distribution

Capital stock 14.33 4.10 1.00 -2.33 -0.59 -0.04
Wealth gini 33.74 13.74 4.79 -2.61 -1.29 -0.25
Time 0.00 0.01 0.02 0.06 0.10 0.18

Panel B: Stationary equilibrium

Capital stock 0.33 0.11 0.03 -0.09 -0.02 -0.00
Wealth gini 27.40 11.71 4.29 -0.86 -0.95 -0.26
Time 0.33 0.71 2.40 1.00 1.75 4.16

Panel C: Accumulated differences of impulse responses

Capital stock (FO) 5.00 2.40 0.91 1.13 0.23 0.01
Wealth gini (FO) 17.93 11.40 2.76 0.60 0.34 0.21
Capital stock (SO) 11.13 6.98 4.70 10.94 5.44 1.23
Wealth gini (SO) 162.03 206.74 229.95 43.46 16.64 0.91
Time (FO) 0.01 0.03 0.30 0.01 0.03 0.32
Time (SO) 1.82 13.24 201.42 1.85 13.59 232.04

Notes: Values represent percent deviations of the solutions with nk gridpoints to the
“true” solution (DEGM and nk = 500). Panel A shows the results with constant prices
and policies from the “true” solution (only resolving the stationary distribution). Panel
B shows the results for solving the stationary equilibrium including prices and policies.
Panel C shows accumulated differences of impulse responses following a 7.5 p.p. shock to
δ (over 300 periods) with first-order (FO) and second-order (SO) perturbation solution.
Time refers to the computation time (in seconds) that it takes to solve for the solution
on a laptop with 16-core, 3.3GHz CPU. Specifically, to solve for (A) the stationary
distribution, (B) the stationary equilibrium and (C) the perturbation solution.
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Figure 2: Comparison of stationary cumulative distribution in capital for different grid
sizes with constant prices and policies from the “true” solution (DEGM and nk = 500)
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Panel A does this for the first exercise with constant prices and policies. Figure 2 graph-
ically compares the implied stationary distribution in capital for different grid sizes in
this case. Panel B compares the two methods for the second exercise of solving the
stationary equilibrium. We find that our method converges to the “true” distribution
much faster, especially for cross-sectional moments.8 For a given number of gridpoints,
the histogram method is faster in terms of computational time, mainly because it does
not require iterations when updating the distribution. However, for a given accuracy,
our method is faster when solving for the stationary equilibrium.

4 Solving Higher Order Distributional Dynamics

Our second application is a setup with aggregate risk. As explained in Section 2, our
method is able to capture nonlinearities in such setups. Specifically, we study a third-
order perturbation solution of the Aiyagari model outlined above with capital deprecia-
tion shocks. Since we use third-order splines to interpolate the distribution, our method
captures all nonlinear effects in both the distribution and the policy function.

To do so, we extend state-space perturbation techniques for heterogeneous agent
models from Bayer and Luetticke (2020) to higher orders, following Andreasen et al.
(2018) and Levintal (2017). Solving the model up to third order allows us to implement

8This mirrors the findings in Den Haan et al. (2010), which compares the approximation of the
Kolmogorov forward equation by Monte Carlo simulation, histogram method, or direct integration using
a spline for the cumulative distribution function.
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Figure 3: Impulse responses to capital depreciation shock
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Notes: Impulse responses of capital (left panel) and wealth Gini (right panel) to shock ν1 =

7.5 p.p. from first-order (dotted black), second-order (solid blue), and third-order (dashed red)
solutions using DEGM, and from third-order solution using the histogram method (dash-dotted
green), evaluated at non-stochastic steady state (nk = 100). Y-axis: Percent deviation from
non-stochastic steady state. X-axis: Quarter.

asymmetric shocks. We follow Levintal in approximating the binomial distribution of a
depreciation shock with a continuous distribution that has the same higher-order mo-
ments. Agents internalize the positive third moment of the shock, which acts as invest-
ment risk.9 In particular, capital depreciation δt deviates from its steady-state value by
following the process:

δt = δ + νt, νt ∼ F ν(0, σδ, τδ), (12)

where σ2
δ and τ3δ are the second and third moments of the depreciation shock distribution,

respectively. In our calibration, σδ = 0.005 and τδ = 0.012, which corresponds to a 0.4%
chance that a disaster destroys 7.5% of the capital stock in a given period and causes a
10% drop in annual GDP, in line with evidence collected by Barro (2006).

We propose this Krusell and Smith (1998)-style model with investment risk as a
new baseline model for studying aggregate nonlinearities with household heterogeneity.
It overcomes the approximate linearity in aggregate capital of the original Krusell and
Smith (1998) model while being equally parsimonious. Figure 3 compares the impulse
responses to a one-time 7.5% destruction of the capital stock, using DEGM to compute
the dynamics with first-, second-, and third-order perturbation solutions.10 The first-

9When simulating the model, we draw shock innovations from a normal-inverse Gaussian distribution
that matches these moments.

10Appendix C summarizes the state-space system to which the perturbation is applied.
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Table 3: Ergodic moments under second and third order solutions

Steady state Second Order Third Order

Variable Hstgrm DEGM Hstgrm DEGM Hstgrm DEGM

Output 2.95 2.95 -0.2 (0.7) -0.2 (0.7) -0.3 (0.7) -0.5 (0.7)
Capital stock 30.06 30.02 -0.5 (2.2) -0.6 (2.1) -1.0 (2.2) -1.6 (2.1)
Wealth Gini 26.95 23.90 -1.4 (1.3) 2.1 (0.7) 1.8 (1.4) 12.4 (0.6)

Notes: Non-stochastic steady state levels across methods (nk = 100, columns 1-2). Means and
standard deviations (in brackets) across perturbation order and methods, in percent deviation
from non-stochastic steady state (columns 3-6). Moments are averages of simulated data gener-
ated from pruned model dynamics (Andreasen et al., 2018) for T = 10.000 periods. Depreciation
shocks are drawn from normal-inverse Gaussian distribution F ν(0, σδ, τδ).

order solution slightly understates the decline in aggregate capital and overstates the
decline in the Gini coefficient of wealth in response to the capital depreciation shock.
Taken together, both reflect that the distributional dynamics in this model are nonlinear
with respect to aggregate shocks, but that the feedback from inequality to equilibrium
prices is modest.

As with the steady state, the histogram method and DEGM converge to the same
first-order perturbation solution. Again, DEGM converges to the true solution faster
in terms of number of gridpoints. Computation time is now close to identical across
both methods for the same number of gridpoints.11 Table 2 Panel C shows the absolute
difference in the impulse response of the capital stock and the Gini coefficient to a
7.5 percentage point depreciation shock relative to the 500-gridpoint DEGM solution.
Again, the performance of the DEGM with fewer gridpoints is better, especially for the
cross-sectional moments. Table 2 Panel C also shows the lack of convergence for second
order solutions. Both the results for first and second order solutions are consistent
with Bhandari et al. (2023). As explained in Section 2, the histogram method misses
the nonlinear response of the distribution to policy changes. Figure 3 also plots the
third-order dynamics of capital and the Gini coefficient for the histogram method. It
overestimates the decline in the capital stock and the Gini coefficient in response to a
capital depreciation shock.

Higher-order solutions not only provide a better approximation of the dynamics,
but also, importantly, capture the response of households to aggregate risk. Table 3
documents how the ergodic distribution with aggregate risk differs from the stationary
distribution. Appendix A shows that the third-order solution captures the effect of the

11Both methods are updated via iteration when doing the perturbation solution.
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Figure 4: Relative shift of the density of capital holdings with aggregate risk
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axis: Difference of density in percentage points. X-axis: Capital holdings.

skewed distribution of aggregate shocks, while the second-order solution only captures
the effect of the variance. Aggregate risk here refers to investment risk. As in Angeletos
(2007), this reduces the aggregate capital stock because for most households the substi-
tution effect is stronger than the income effect. Using DEGM, we find a 1.6% reduction
in capital. In comparison, the histogram method predicts only a 1% reduction in aggre-
gate capital. Thus, the histogram method understates the impact of investment risk on
economic activity.

The effect of under-accumulation of capital is driven by the lower savings of less
wealthy households, so that wealth inequality increases. For these households the sub-
stitution effect dominates as they have little capital income. What is more, a lower
capital stock implies a lower wage rate and a higher rate of return on capital. This also
benefits wealthy households that rely mainly on dividend income. Thus, while a capital
depreciation shock itself compresses the distribution of wealth, the risk of such a shock
increases wealth inequality on average. Our method finds a 12% increase in the wealth
Gini coefficient with aggregate risk, while the histogram method finds only a 2% in-
crease, see Table 3. The difference between the methods is thus much more pronounced
for cross-sectional moments than for aggregates.

13



Figure 4 zooms in and shows the changes that aggregate investment risk induces in
the distribution of wealth. As expected, the changes are stronger for the third order
solution, but the direction of change is the same between the second and third order
solutions. The former captures the variance and the latter the skewness of investment
risk. Economically important, we find that the introduction of aggregate investment risk
hollows out the middle class.

5 Conclusion

We propose a novel endogenous gridpoint method for distributional dynamics (DEGM ).
Our method retains the tractability and speed of the histogram method commonly used
in the literature, while requiring significantly fewer gridpoints and capturing all nonlinear
effects of distributional dynamics. By preserving the nonlinearities critical to heteroge-
neous agent models, DEGM provides an improved framework for studying models with
household heterogeneity and aggregate risk. It allows for a straightforward implemen-
tation in the established sequence and state-space approaches for solving heterogeneous
agent models with aggregate shocks (Auclert et al., 2021; Bayer et al., 2024). We pro-
vide an example of a state-space solution with a third-order perturbation. Specifically,
we propose a Krusell and Smith (1998) model with aggregate investment risk. In this
model, we show that aggregate investment risk has a strong impact on inequality.
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A Perturbation of Distributional Dynamics

A.1 Comparison of Discretized Methods

We compare discretized methods12 of distributional dynamics by abstracting from the
stochastic transition across income levels, i.e., transitions across wealth levels are gov-
erned only by the optimal policy function. A is the wealth grid. Ft(j) denotes the
cumulative probability at wealth level Aj at time t, and Ft := [Ft(j)]j . a∗t (i) ∈ A∗

t is the
optimal policy at wealth level Ai at time t.

The histogram method is

Ft+1(m) =

m∑
j=1

∑
i

A∗
t (i, j) (Ft(i)− Ft(i− 1)) , (13)

where A∗
t (i, j) = Ia∗t (i)∈[Aj ,Aj+1)

Aj+1−a∗t (i)
Aj+1−Aj

+ Ia∗t (i)∈[Aj−1,Aj)
a∗t (i)−Aj−1

Aj−Aj−1
. Clearly, A∗

t (i, j) is
linear in optimal policies a∗.

DEGM, instead, works through an interpolation

Ft+1(j) =
ˆ̃F (Aj | A∗

t , Ft), (14)

with values at interpolation nodes ˆ̃F (a∗t (i) | A∗
t ,Ft) = Ft(i). If the interpolator is

piecewise linear (linear spline), DEGM has a structure similar to the histogram method:

Ft+1(j) =
∑

i: a∗t (i−1)<Aj≤a∗t (i)

A∗,L
t (i, j) (Ft(i)− Ft(i− 1)) + Ft(i− 1), (15)

where A∗,L
t (i, j) =

Aj−a∗t (i−1)
a∗t (i)−a∗t (i−1) . As here the optimal policies are the interpolation nodes,

A∗,L
t (i, j) is nonlinear in a∗.
Instead, we use a cubic spline for the interpolation as it captures nonlinearities of the

continuous limit (see Appendix B). This adds smoothness conditions at the interpolation
nodes. In practice, we use a piecewise cubic hermite interpolating polynomial algorithm
that preserves monotonicity (Fritsch and Butland, 1984), with one-sided approximation
of the slopes at the endpoints. A change at one interpolation node-value pair (a∗t (i), Ft(i))

affects the entire interpolated function, so that DEGM has the general form of Eq. (14).
12We call a method “discretized” when a continuous distribution is represented by a finite vector.
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A.2 Generalization and Higher Order Terms

To discuss the perturbation attributes of distributional dynamics, we propose the form

Ft+1 = A(a∗t )Ft, (16)

where we treat the distribution F and the optimal policies a∗ as scalars for ease
of exposition. This structure captures the histogram method and piecewise linear in-
terpolation exactly, and DEGM with our implementation of cubic spline interpolation
approximately.13 We analyze the Taylor expansion of this dynamic with respect to the
deviation F̂t = Ft − F̄ and some aggregate disturbance Dt that affects optimal policies,
around a steady state, characterized by F̄ and ā∗, where these disturbances are zero.
Terms in red are zero for methods that are linear in optimal policies.

First order approximation:

Ft+1 ≈ F̄ + A(ā∗)F̂t +
∂A(ā∗)

∂a∗
∂a∗t
∂Dt

F̄Dt (17)

Second order additional terms:

∂A(ā∗)

∂a∗
∂a∗t
∂Dt︸ ︷︷ ︸

(I)

F̂tDt +
1

2

(
∂A(ā∗)

∂a∗
∂2a∗t
∂D2

t

+
∂2A(ā∗)

∂a∗2

[
∂a∗t
∂Dt

]2)
︸ ︷︷ ︸

(II)

F̄D2
t (18)

Third order additional terms:

1

2

(
∂A(ā∗)

∂a∗
∂2a∗t
∂D2

t

+
∂2A(ā∗)

∂a∗2

[
∂a∗t
∂Dt

]2)
︸ ︷︷ ︸

(III)

F̂tD
2
t+ (19)

+
1

6

(
∂A(ā∗)

∂a∗
∂3a∗t
∂D3

t

+ 3
∂2A(ā∗)

∂a∗2
∂a∗t
∂Dt

∂2a∗t
∂D2

t

+
∂3A(ā∗)

∂a∗3

[
∂a∗t
∂Dt

]3)
︸ ︷︷ ︸

(IV)

F̄D3
t (20)

13Locally, ˆ̃F (Aj | A∗
t , Ft) ≈ ˆ̃FF (Aj | A∗

t , F̄)F̂t. The simple cubic spline interpolation is exactly linear
in the vector Ft, but by taking the harmonic mean of the neighboring slopes at the interpolation nodes,
which preserves monotonicity, our method loses this property. We abstract from this implementation
detail.
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A.3 Application: Asymmetric risk in our Krusell and Smith model

The aggregate risk in the economy arises from a capital depreciation shock that affects
optimal saving choices through income and substitution effects. This induces four poten-
tial nonlinearities in the distributional dynamics. Term (I) captures a state-dependency:
the distributional dynamics are different when the optimal policy is far from the steady
state. Term (II) captures a risk-adjustment: nonlinearities and variance in optimal
policies affect how the steady state distribution passes through. Term (III) captures a
higher-order state dependence: nonlinearities and variance in optimal policies alter the
dynamics of the distribution. Term (IV) is an asymmetric risk adjustment: higher-order
nonlinearities and skewness in optimal policies affect how the steady-state distribution
passes through.

Methods that are linear in optimal policies miss the effect of expected variation in
households’ saving decisions caused by asymmetric investment risk on the distributional
dynamics and the ergodic distribution. Nevertheless, we find that the third-order risk
correction to the distribution is large even for the histogram method, which implies that
the dependence of optimal policies on third-order risk, ∂3a∗t

∂D3
t
, is significant. Note that

D also captures endogenous aggregate states that differ from the steady state at higher
orders, such as the capital stock. This creates feedback effects.
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B Nonlinearity of the Kolmogorov Forward Equation in a∗

In Appendix A.2, we show that (discretized) distributional dynamics in optimal policies
should be nonlinear to account for higher-order effects. We now analyze the distribu-
tional dynamics in the continuous limit, which provides an intuition for the cause of
the nonlinearities and shows why it is crucial for the interpolation method of DEGM to
account for the curvature of the distribution.

To see that even in the limit the “histogram” method misses a potentially important
nonlinearity, again use the monotonicity of the policy function to write the end-of-period
distribution as:

F̃t(a
′, y) =

∫
x|a∗(x,y)≤a′

ft(x, y)dx =

∫ a∗−1(a′,y)

ft(x, y)dx. (21)

This implies that the first order (Frechet) derivative of F̃t w.r.t. some variable D is

∂F̃t(a
′, y)

∂D
= ft(a

∗−1(a′, y), y)
∂a∗−1(a′, y)

∂D
, (22)

so that the second order derivative of F̃t w.r.t. some variable Dt is

∂2F̃t(a
′, y)

∂D2
= ft(a

∗−1(a′, y), y)
∂2a∗−1(a′, y)

∂D2
+

∂ft(a
∗−1(a′, y), y)

∂a

(
∂a∗−1(a′, y)

∂D

)2

. (23)

This shows that the nonlinear effects of a change in D are composed of a nonlinear
effect on the policies (here their inverse) and the derivative of the density times the
squared linear effect of D on the (inverse) policy.

Around the mode of the distribution (conditional on y) these effects will be small,
because ∂ft(a∗

−1(a′,y),y)
∂a is small. What is more, the effect on the distribution Ft+1 will

be the average over income shocks. Thus, on average, the importance of the second term
will be smaller for more symmetric distributions.
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C Higher Order Perturbation Solution of Heterogenous
Agent Models

Ξ combines all equilibrium conditions from households, Ξi, and firms as well as market
clearing, ΞA:

Ξ (Ft, St, νt, Pt, Ft+1, St+1, νt+1, Pt+1, εt+1) =

[
Ξi (·)
ΞA (·)

]
(24)

Ξi (·) :=

[
Ft+1 − L(Ft, h

k
t )

νt −
(
uhk

t
+ βEy′νt+1

)] (25)

ΞA (·) :=

St+1 −H(St) + ηεt+1

Φt(h
k
t , Ft)

εt+1

 (26)

s.t.

hkt (k, y) = arg max
k′∈Γ(y,k;Pt)

u(y, k, k′) + βEy′|yνt+1(y
′, k′), (27)

where Ft is the cumulative distribution function over idiosyncratic states (k, y), νt is the
value function of households, St ∈ Rn denote the aggregate states in this economy other
than the distribution of agents over their idiosyncratic states, and Pt denote aggregate
prices. We solve the system for the state dynamic h : (Ft, St) 7→ (Ft+1, St+1) and the
state-to-control mapping g : (Ft, St) 7→ (νt, Pt). These functions are implicitly defined
by

Et [Ξ ((Ft, St), g(Ft, St), h(Ft, St), g(h(Ft, St)), σεt+1)] = 0, (28)

where σ is the perturbation parameter. Following Reiter (2002), we use a Taylor expan-
sion around the non-stochastic steady state characterized by σ = 0, to approximate the
response to aggregate shocks εt. This requires differentiating Ξ up to the desired order of
the Taylor approximation of h and g. In practice, we follow Bayer and Luetticke (2020)
and write the distribution function as a Copula function and its marginals. However,
DEGM does not require this and works directly on the distribution function as well.

Once the derivatives of Ξ are calculated, we solve for the derivatives of h and g by
writing up a system of linear equations in the concise manner of Levintal (2017). Since
our model is much larger than what Levintal solves, we innovate on how to sparsely set
up components like the permutation matrix and on how to efficiently compute matrix
Kronecker products. Finally, we use pruned dynamics when computing endogenous
moments and generalized impulse responses, following Andreasen et al. (2018).
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