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Abstract
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(2017) on how to solve such models in continuous time. We suggest first solving

for the stationary equilibrium of the model without aggregate risk. We then write
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their stationary equilibrium counterparts. Finally we use the perturbation method
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1 Introduction

Models of heterogeneous agents have become widespread in macroeconomics, at least

since Krusell and Smith (1997, 1998) developed the first widely applicable algorithm

to solve them in an environment of aggregate risk. Yet, their use has been limited

initially by the computational resources needed to solve these models. Over the last

decade, substantial progress has been made in developing algorithms that can solve these

models more efficiently.1 One of the most popular and powerful of these methods was

originally developed by Reiter (2002, 2009). This method extends perturbation methods

to heterogeneous agent environments, i.e., it builds on the methods often used to solve

dynamic stochastic general equilibrium models with a representative agent (see, e.g.,

Schmitt-Grohé and Uribe, 2004). Our paper restates this procedure and additionally

shows how the necessary dimensionality reduction of the heterogeneous agent model can

be achieved in a new, intuitive way.

The extension of perturbation methods to heterogeneous agent models relies on writ-

ing the model in the form of a non-linear difference equation that is function-valued

instead of vector-valued (as in representative agent models). This equation is then (lin-

early) approximated around the stationary equilibrium of the heterogeneous agent model

without aggregate risk. The (at least) two functionals that enter the difference equation

are the distribution of agents over idiosyncratic states (e.g., the wealth distribution) and

the function (value or policy function) that describes the optimal individual behavior.

These functionals can be seen as replacements for the aggregate capital accumulation and

consumption Euler equation in representative agent models. These replacements allow

us to maintain all non-linearity with respect to microeconomic shocks—yet obtaining a

model that is linear in aggregate variables.

While all of this is straightforward in theory, the key practical issue is how to approx-

imate the functionals involved because they need to be replaced by finite-dimensional

objects for the actual computation of the model’s dynamics. In particular, when the

individual planning problem is rich insofar as it has many idiosyncratic states, this is-

sue is severe. The curse of dimensionality implies that it is hard to come up with

a small enough finite-dimensional representation of the distribution function and the

value/policy function without having any a priori knowledge of their shape.

However, the solution of the stationary equilibrium provides us with such knowledge.

Therefore, we propose a dimensionality reduction step after the stationary equilibrium

1See, e.g., the JEDC comparison project: Den Haan et al. (2010), Den Haan (2010b), Reiter (2010),
Young (2010), Maliar et al. (2010), Kim et al. (2010), Algan et al. (2010), Den Haan and Rendahl (2010).
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of the economy (i.e., without aggregate risk) has been determined, but before perturbing

the system. This dimensionality reduction is adaptive and takes into account the shape

of the distribution and value function in the stationary equilibrium. As a result, the

stationary equilibrium can be computed without taking into account that the goal is to

solve for aggregate dynamics in the end.

In detail, we suggest using sparse expansions of value and distribution functions

around their non-sparse stationary equilibrium counterparts. First, we write the value

function in the stationary equilibrium as a sum of a full set of basis functions and

determine the coefficients on these. We then allow only those coefficients of the basis

functions to vary outside the stationary equilibrium that are large in the stationary

equilibrium while we keep all small coefficients at their stationary equilibrium values.

This is analogous to lossy video compression where the compressed video stream is coded

by strongly compressing the difference to a lightly compressed reference frame. In fact,

we borrow further from image compression by writing the value functions in the form

of their discrete cosine transform (i.e., as Chebyshev polynomials on the Chebyshev

nodes). Second, we split the high-dimensional distribution function into the histograms

of its marginals and their (joint) copula. As a baseline we suggest keeping the copula

fixed at its stationary equilibrium value. This, as a second dimensionality reduction,

picks up the idea of Krusell and Smith (1997, 1998) that not all moments of the wealth-

income distribution are equally important for price formation and therefore relevant

for the equilibrium dynamics. The assumption of a fixed copula implies that the rank

correlation among, say, wealth in various kinds of assets and income is time constant

without imposing any restriction on changes in the shape of the marginal distributions.

However, one can also treat the copula as time varying, applying the same dimensionality

reduction for the copula as we do for the value/policy functions, i.e., using the discrete

cosine transforms.

Concretely, we show, both for an incomplete markets model with one asset and for a

model with two assets, that the assumption of a fixed copula has virtually no impact on

the model dynamics but substantially speeds up the computation. The largest share of

the computation time falls on the calculation of the stationary equilibrium followed by

the calculation of the derivatives of the non-linear difference equation. However, both

can be sped up by parallelization. At any rate, the models we consider can all be solved

on a standard desktop computer in a matter of seconds or minutes using our algorithm.

By reducing the dimensionality after the solution of the stationary equilibrium but

before linearizing, our method differs from existing proposals. The original proposal

by Reiter (2002) was to represent distribution functions by histograms without any
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dimensionality reduction and to write value functions (or other functionals describing

the dynamic planning problem) as finite-dimensional parametric objects—for example,

by using splines. However, when the individual planning problem is rich insofar as it has

many idiosyncratic states, this procedure can become inaccurate and in many cases even

infeasible to solve numerically. The first idea to tackle this issue was to be as sparse as

possible in the parametric approximation of functions when solving for the stationary

equilibrium (see, e.g., Reiter, 2009), e.g., through sparse grid methods in the dynamic

planning problem (see, e.g., Bungartz and Griebel, 2004; Krueger and Kubler, 2004) and

by using mixtures of parametric distributions as proposed by Winberry (2018). In other

words, these methods rely on achieving dimensionality reduction ex ante, before solving

for the stationary equilibrium, and hence impose a numerical constraint on this solution.

The analogy of this is still in image compression, or the compression of a sequence of

images picture-by-picture, which is in general inefficient for video compression because

of many non-moving parts. For a dynamic equilibrium model this analogy carries over:

Many aspects of value and policy functions do not change much with aggregate shocks,

such that the stationary equilibrium functions are good “reference frames.”

An alternative attack, also suggested by Reiter (2009), is to use singular value decom-

position for dimensionality reduction of the Jacobian of the system after linearizing the

difference equation but before solving it. Ahn et al. (2017) develop this approach further

in that they write the planning problem in continuous time and suggest using automatic

differentiation in order to obtain a sparse Jacobian. This helps with both the memory

requirements, and with the computing time for both the singular value decomposition

and the solving of the difference equation itself. In addition, they suggest perturb-

ing the deviations of value and distribution functions from their stationary equilibrium

counterparts instead of perturbing the functions themselves. This allows for different

parametric classes for deviations and stationary equilibrium functionals. As a result, it

decouples the number of perturbed parameters from the number of parameters used in

the approximation of the functions in the stationary equilibrium (which can potentially

be richer). Our approach shares the latter aspect with the approach of Ahn et al. (2017).

Compared to their method, ours has the advantage of avoiding the calculation of a very

large Jacobian because the dimensionality is reduced before this step. Thus, it can be

applied to models formulated in discrete time, where the Jacobian would otherwise be

too non-sparse to be efficiently stored in a PC’s memory. Another advantage is that

this allows us to calculate second-order (or higher) perturbations, because the number

of (higher-order) derivatives to be calculated does not increase too fast. Concretely, we

provide an example where it takes a few minutes to calculate a brute-force second-order
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perturbation solution to the Krusell and Smith (1998) model.

The remainder of the paper is organized as follows: Section 2 defines the generic

model we aim to solve with our method and lays out the solution method itself. Section

3 provides the economic model of two application examples: first, a standard incomplete

markets model with just a single asset, capital, as in Krusell and Smith (1998); second, an

extension of that model, in which households have to choose between assets of different

liquidity. They can hold a liquid nominal asset or illiquid capital. We add a nominal

rigidity to this model, such that it is of the New-Keynesian flavor. For the first model

variant, we can compare our solution to the original Krusell and Smith (1998) algorithm

and to the standard Reiter (2009) approach. Our method is equally as precise as Reiter’s

standard approach but faster. It is faster and slightly less precise than the Krusell and

Smith algorithm in our example. The second model variant is too rich in terms of

aggregate states to be solved by Reiter’s standard approach. Here we only show that

simulating the model along the lines of Den Haan’s 2010a test proves the method to be

accurate. Section 5 concludes. Example codes are provided as an online appendix.

2 Method

We consider a generic economy with a continuum of heterogeneous agents and aggregate

risk. We first define the objects we need to work with. Thereafter, we define a stationary

equilibrium and a sequential equilibrium (with recursive individual planning) for this

economy. Then, we describe how the sequential equilibrium can be solved for locally

and how a reduction of the state space can be achieved. Finally, we give an overview of

the suggested algorithm.

2.1 Prerequisites and notation

Let St ∈ Rn denote the aggregate states in this economy other than the distribution of

agents over their idiosyncratic states sit ∈ Rm for individual i at time t. In a representa-

tive agent model these St would be the only state variables. With heterogeneous agents,

the distribution function µt of agents over sit is also part of the aggregate states of the

economy but for notational purposes shall not be included in St.

Both St and sit shall be partitioned into an exogenous stochastic and an endogenous

deterministic component

St =

[
Xt

Dt

]
, sit =

[
xit

dit

]
, (1)

4



with length n = nx + nd and m = mx +md, respectively.

With stochastic elements in St and sit, agents in the economy face both aggregate and

idiosyncratic risk. We denote the stochastic elements of the aggregate and idiosyncratic

state space by Xt and xit, respectively. We assume that all stochastic variables follow a

stationary Markov chain, such that

Xt+1 = HX(Xt) + εt+1, xit+1 = hx(xit) + εit+1, (2)

and the innovations εt+1, εit+1 have variances ωΩ and σΣ for the aggregate and idiosyn-

cratic variables, respectively.

The remaining idiosyncratic state variables dit are chosen by households in order to

maximize their utility. This choice shall be described by the generic planning problem

ν(xit, dit, St, µt) = max
dit+1

u(xit, dit, dit+1;Pt) + βEν(xit+1, dit+1, St+1, µt+1), (3)

subject to dit+1 ∈ Γ (xit, dit, Pt) where Γ is a budget set and Pt = P (Xt, Dt, µt) is a

pricing kernel.2 Prices may result from market clearing in the sense introduced below,

but may also be directly determined by the aggregate state or the distribution, such as,

e.g., interest rates set by the central bank or the wage rate as a function of the aggregate

amount of capital. The further aggregate states move for simplicity according to some

given law of motion Dt+1 = HD(Xt, Dt, µt).
3 Note that this does not preclude prices

from also depending on choices for state variables Dt+1 made at time t because we can

write these as functions of states in t.

It will come in handy later to simplify notation for the Bellman equation by observ-

ing that, from the individual’s point of view, aggregates and distributions only matter

through prices. These, in turn, we can summarize by adding a time index t to the value

functions. Dropping the indexes to the idiosyncratic states and using ′ to denote the

next period variables, we can write the individual planning problem recursively as:

νt(x, d) = max
d′∈Γt(x,d)

ut(x, d, d
′) + βEνt+1(x′, d′), (4)

where the time index here stands for conditioning the individual planning problem and

the pricing kernel on all state variables of time t. Individual policy functions hdt can be

2Potentially, prices indirectly enter into the utility function because they may change the mapping of
states to consumption.

3The law of motion HD can be the outcome of some other aggregate planning problem as well.
Importantly it is neither stochastic nor influenced by a single individual decision.
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defined accordingly.

To close the model, we need a description of market clearing. We define an excess

demand function Φt(h
d
t , µt) that maps the idiosyncratic policies and the distribution,

as well as prices and aggregate states (captured by the time index), into a real vector.

Typically, we have as many prices as idiosyncratic endogenous states, given that we

assumed an exogenous law of motion for aggregate states, i.e, Φt(h
d
t , µt) ∈ Rmd .

For example, in an economy as in Krusell and Smith (1998), i.e., with capital and

aggregate productivity risk, Φ is given by the difference between the marginal product of

capital and the rate of return on capital. In a bond economy with only IOUs, in contrast,

we would have Φ =
∫
hdt (s)dµt (a time constant Φ), and in an economy with government

bonds this would be Φt =
∫
hdt (s)dµt−Bt, where Bt is the amount of government bonds

issued and circulating in t (such that Φ changes in aggregates).

2.2 Stationary equilibrium and approximate solution

Since the method developed by Reiter (2009) approximates the aggregate dynamics

around the stationary equilibrium, we first consider an economy without aggregate risk,

i.e., where ω = 0. For such an economy, prices, distributions, and hence value functions

do not change over time, and we can define a stationary equilibrium generically as follows.

Definition 1. A stationary equilibrium is a value function ν̄, a distribution function

µ̄, a policy function h̄d(s), and prices P̄ such that

1. The individual policy h̄d(s) is the maximizer of the Bellman equation (3) given P̄ .

h̄d(x, d) = arg max
d′∈ΓP̄ (x,d)

u(x, d, d′) + βEν̄(x′, d′). (5)

2. The value function solves the Bellman equation (3) given the individual policy

h̄d(s).

3. Markets clear, i.e., Φ(h̄d, µ̄) = 0.

4. The distribution µ̄ is the stationary distribution of the Markov chain induced by

h̄(s, ε) :=

[
hx(s) + ε

h̄d(s)

]
.

To solve for the equilibrium it is necessary to approximate the model. Typically, the

model is solved for a (full tensor) grid of points in Rm replacing the functionals by some

parametric approximation. A common approach is, for example, to replace the value
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functions with splines with the nodes of the spline being equal to the grid points. When

first-order conditions are sufficient and the problem is differentiable, we can replace the

Bellman equation with an Euler equation to describe the planning problem. Since the

techniques to find the equilibrium value functions are standard, we refer only to the

literature here (see, e.g., Carroll, 2006; Hintermaier and Koeniger, 2010).

Similarly, the distribution is often approximated by a step function (the density being

replaced by a point mass) on the grid or by a piecewise linear function (the density

function being a step function).4 Since policy functions map potentially into non-grid

points, a standard technique is to introduce some trembling to the policy function such

that policies fall on neighboring grid points with such probabilities that the off-grid

policy equals the expected value of the tremble; see Young (2010).5

Under these assumptions, the dynamics of the wealth distribution can be described

by the point-mass, in short a histogram, dµ, replacing the density, and a transition

matrix Πh̄ induced by the policy function h̄. In the stationary economy

dµ̄ = dµ̄Πh̄ (6)

needs to hold. This is the discrete time analogue to the Kolmogorov forward / Fokker-

Planck equation in continuous time systems. For a given transition probability matrix,

i.e., for a given policy function, the stationary distribution can then be calculated effi-

ciently by determining the eigenvector of Πh̄ to the eigenvalue 1. Similarly, if we assume

that the value function is replaced by a linear interpolant, we obtain the result that the

solution to the Bellman equation is given by a finite vector of values, with a slight abuse

of notation also denoted by ν̄, which needs to satisfy

ν̄ = uh̄d + βΠh̄ν̄, (7)

where uh̄d is the period payoff under the optimal policy.6

In the following, we assume that the stationary equilibrium is solved for in this way

4We follow Young (2010) in using the point-mass approach throughout and understand the word
“histogram” as a synonym for point-mass distributions.

5If one wants to read this in a strict way, then we assume that the individual planner can choose
only mixed strategies over two neighboring grid points and that the current payoffs depend on the two
grid points and the relative probability weights chosen. Then the solution with linear interpolation is an
exact solution to the described surrogate planning problem.

6If first-order conditions are sufficient such that, say, a standard consumption Euler equation holds,
we can also work with

ū′h̄d = β(1 + r)Πh̄ū
′
h̄d ,

instead of (7), where ū′h̄ is the marginal utility of consumption under the optimal policy.
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on a full tensor grid, because these methods are readily available and easy to implement,

and their application is, in most cases, not constrained by memory availability even on

desktop computers. However, the method laid out below extends readily to the case

where the stationary equilibrium is solved for by sparse grid methods; see Bungartz and

Griebel (2004) or Krueger and Kubler (2004).

2.3 Sequential equilibrium with recursive individual planning

If there is uncertainty regarding the aggregate states, value functions written as func-

tions of idiosyncratic states are no longer time constant in equilibrium. The same holds

true for the distribution functions. Instead, if the model is stationary, value functions

and distributions will converge to a sequence that fulfills the following equilibrium con-

ditions.7

Definition 2. A sequential competitive equilibrium with recursive individual

planning is a sequence of value functions νt, a sequence of distribution functions µt, a

sequence of policy functions hdt (s), a sequence of aggregate states St, and a sequence of

prices Pt such that at each point in time t:

1. The individual policy is the maximizer of the Bellman equation (3) given the prices

Pt.

hdt (x, d) = arg max
d′∈Γ(x,d;Pt)

u(x, d, d′;Pt) + βEνt+1(x′, d′). (8)

2. The value function solves the Bellman equation (3) given the individual policy hdt

and the expected continuation value νt+1.

3. Markets clear, i.e., Φt(h
d
t , µt, Pt, St) = 0.

4. The distribution µt+1 is induced by ht(s, ε) :=

[
hx(s) + εt

hdt (s)

]
and the distribution µt.

5. The sequence of aggregate states is induced by

[
Xt+1

Dt+1

]
=

[
HX(Xt, Dt) + εt+1

HD(Xt, Dt, µt)

]
Again, we need to approximate the functions involved in the model in a suitable

way to solve the model. For that purpose, we replace the distribution function by a

histogram and add trembles to the policy. Finally, we write the value function as a

7Note that we write the problem still in recursive form from a household’s point of view.
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linear interpolant. This implies that the discrete time Fokker-Planck equation (6) takes

the form

dµt+1 = dµtΠht , (9)

which makes clear its forward equation character. Further note that due to the continuum-

of-agents assumption, there is no randomness in the transition other than through ag-

gregate states and therefore shocks changing ht. The Bellman equation (7) now takes

the form

νt = uhdt
+ βΠhtνt+1, (10)

where uhdt
is the period payoff under the optimal policy at time t.

Combining these equilibrium conditions, we can summarize the sequential equilib-

rium conditions by the non-linear difference equation given by

F (dµt, St, dµt+1, St+1, νt, Pt, νt+1, Pt+1, εt+1) =



dµt+1 − dµtΠht

Xt+1 −HX(Xt, Dt) + εt+1

Dt+1 −HD(Xt, Dt, dµt)

νt −
(
uhdt

+ βΠhtνt+1

)
Φt(h

d
t , dµt)

εt+1


(11)

s.t.

hdt (s) = arg max
d′∈Γ(x,d;Pt)

u(x, d, d′;Pt) + βEνt+1(x′, d′). (12)

A sequential equilibrium now fulfills

EtF (dµt, St, dµt+1, St+1, νt, Pt, νt+1, Pt+1, εt+1) = 0. (13)

For notational simplicity, it is useful to define , Ŝt :=
[
dµt Xt Dt

]′
as all the aggregate

states of this system, including the distribution, and Ĉt :=
[
νt Pt

]′
as all the controls

of the system, i.e., prices and value functions; to be more precise, their function values

at the grid points (nodes). Again if we are working with first-order conditions, value

functions might be replaced with marginal utilities.
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2.4 Approximating the sequential equilibrium around the stationary

equilibrium

There are various ways to solve the non-linear difference equation, EtF = 0, by per-

turbation methods. Here we follow Klein (2000) and Schmitt-Grohé and Uribe (2004),

who show how to solve the system (11) by first- and second-order perturbation. These

methods can be readily applied here as well, choosing the stationary equilibrium solution

as the point around which to perturb the system, as in Reiter (2002).

For expositional purposes, we focus on first-order perturbation here. This means

that it is necessary to calculate the Jacobian matrix of the system (dropping εt+1),

J =
[
FŜ FŜ′ FĈ FĈ′

]
, and solve the linearized difference equation by relating its

solution to the generalized eigenvalue problem[
FŜ′ FĈ′

]
︸ ︷︷ ︸

A:=

ZΛ = −
[
FŜ FĈ

]
︸ ︷︷ ︸

B:=

Z, (14)

with Z being the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues. Split-

ting the eigenvalues such that Λ1 contains the eigenvalues in the unit circle, we can write

Λ =

[
Λ1 0

0 Λ2

]
and Z =

[
Z11 Z21

Z12 Z22

]
. If a local equilibrium exists and is unique, the

number of eigenvalues in the unit-circle is equal to the number of state variables and

the linearized law of motion for state variables is given by O := Z11Λ1Z
−1
11 , while states

map to controls through G := Z12Z
−1
11 . For details we refer to Schmitt-Grohé and Uribe

(2004). The fact that the distribution function over idiosyncratic states is part of the

aggregate state vector and that the value functions (or marginal utilities) are part of the

aggregate vector of controls does not change the solution in principle.

In practice, however, solving the generalized eigenvalue problem (or equivalently

making a qz-decomposition of A,B) becomes easily numerically infeasible because the

number of state variables (and controls) becomes very large, and thus A and B are large

matrices. If the idiosyncratic state-space is high dimensional, both value functions and

distribution functions are objects hard to approximate. A simple tensor grid to describe

the value function or histogram has easily a large number points, even if it has a small

number of points in each dimension of heterogeneity among households. Consider, for

example, a household planning problem with two assets and idiosyncratic income. Even

if we use only 9 points for the income grid and 50 points for each of the two asset grids,

then both dµ and ν are vectors with a length of 22,500 entries, and with this resolution,

the precision is at the lower bound of what one would like to have. This creates various
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numerical problems. First, one needs to calculate many derivatives numerically. In

our example, both A and B would be more than 45, 000 × 45, 000 entries large. While

this calculating of the Jacobian is time consuming, the numerical complexity is only

quadratic in the number of grid points. On top, modern automatic differentiation can

speed this up. Still, the matrix to be stored remains large; each has more than 7GB in

our example if stored as a full double precision matrix.8 Second, the qz-decomposition

and the calculation of generalized eigenvalues become very time-consuming (cubic in the

number of grid points).

The literature has suggested ways to deal with the issue. First, Reiter (2009) sug-

gests replacing the value function with splines in order to decrease the number of nodes

needed to describe the value function. Building on this suggestion, Winberry (2018)

suggests using parametric families for the distribution functions to reduce the number

of parameters that describe the distributions at each point in time. A downside of these

two approaches is that they might impose tight restrictions on the value function and

distribution in the stationary equilibrium.9 What is more, they no longer allow us to

represent the Bellman equation and the distribution dynamics by conveniently linear

systems. For this reason, Ahn et al. (2017) suggest working in continuous time, which

increases the sparsity of the Jacobians. Then they suggest, following the original paper

by Reiter (2009), using singular-value decomposition of the Jacobians to project the state

space of the model into a lower dimensional space without losing much of the dynamics

of the system. Similar to what we suggest next, Ahn et al. (2017) linearize around the

stationary equilibrium value and distribution functions without imposing any a priori

restrictions on the functional forms.

2.5 State-space reduction: Fixed copula, compressed value function

We suggest reducing the dimensionality of the dynamic system before calculating the

Jacobian, but after solving for the stationary equilibrium, which we then can use as a

“reference frame.” This allows us to solve the model in discrete time, where the Jacobian

of the full system is much less sparse than in continuous time.

We achieve dimensionality reduction of the control space by writing the node values

(on the tensor grid) of the value functions as some form of sparse expansions around

8Clearly, many of the derivatives are (close to) zero and thus storing the matrices as sparse matrices
further helps. In fact, this is one of the main advantages of writing the model in continuous time, because
then Πh is very sparse and it is easy to see how this translates into a very sparse Jacobian; see Ahn et al.
(2017).

9Another approach in the literature is to assume a finite but potentially large number of agents; see
e.g. Mertens and Judd (2018). Ragot (2018) provides an overview.
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their stationary equilibrium values:

ν̂t(s) = gν(s; θt, ν̄), (15)

where the length of the time-varying parameter vector θt is much smaller than the size

of the tensor grid for s. We keep the setup with the surrogate planning problem that

uses a linear interpolant outside the tensor grid for s to calculate the value function

for non-node values. This avoids oscillating behavior, which gν might show outside the

nodes, and is computationally convenient. However, it is not central to our algorithm.

Yet, we have not specified how to select gν . One particularly useful way to construct

gν is through (inverse) discrete cosine transformation of the stationary equilibrium value

function. The discrete cosine transformation of a data array yields the coefficients of the

fitted (multi-dimensional) Chebyshev polynomial, where the polynomial is constructed

such that the tensor grid for s is mapped to the Chebyshev knots.10 Importantly, the

absolute value of the coefficients has an interpretation in terms of the R2 contribution

of the corresponding polynomial in fitting the data. This allows us to order and select

the polynomial terms based on their importance.

To discuss this procedure in detail, with a slight abuse of notation, let ν̄ be the

array of the value function values at the nodes of the full tensor grid in the stationary

equilibrium. Further, let Θ̄ = dct(ν̄) be its discrete cosine transform. The inverse cosine

transformation of Θ̄ again produces ν̄. What is key for our procedure later on is that the

larger (in absolute value) a coefficient Θ̄(i) is, the more important is its corresponding

Chebyshev polynomial for fitting ν̄, see Hu and Yu (1998). Therefore, it is useful to

define I as the index set of some α% largest elements of Θ̄ (or equivalently the set

that explains γ% of the total Euclidean norm of Θ̄) and define the sparse coefficient

vector Θ̃ =

Θ̄(i) ∀i ∈ I

0 else
as the vector that shrinks all coefficients outside this set

to zero. Then, the inverse discrete cosine transformation of idct(Θ̃) is the closest one

to ν̄ in a least squares sense among all potential inverse discrete cosine transforms of

arrays of the same level of sparseness. One can roughly read the suggested procedures

by Reiter (2009) and Winberry (2018) as being sparse in this sense when calculating the

stationary equilibrium, and then perturb all the coefficients that are used in calculating

the stationary equilibrium.

Our approach by contrast does not try to be particularly sparse in calculating the

stationary equilibrium, but can reach a higher degree of sparseness when calculating

10See Ahmed et al. (1974) for the seminal contribution.
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the dynamics. This is achieved by using all coefficients Θ̄ as a “reference frame” for

calculating gν(s), by defining

Θ̂(θt) =

Θ̄(i) + θt(i) ∀i ∈ I

Θ̄(i) else

and gν(s) as its inverse discrete cosine transform idct
[
Θ̂(θt)

]
, for a sparse vector θt.

Importantly, for θt = 0 it follows that gν = ν̄ and our method thus fully recovers the

stationary equilibrium value function at the same precision as is used in the computation

of the stationary equilibrium, i.e., without creating any approximation error irrespective

of the degree of sparseness that is used in the calculation of the model dynamics.11

This leaves us with the need to reduce the dimensionality of the distribution function.

For this purpose, we split the distribution into a copula Ξt and marginal distributions

{µ1t(s), . . . , µmt(s)}:

µt(s) = Ξt {µ1t(s), . . . , µmt(s)} . (16)

Again, as with the value functions, we can treat the copula as an interpolant defined

on the grid of steady-state marginal distributions, and also approximate Ξt as a sparse

expansion around the steady-state copula Ξ̄, as we just did for the value function. The

most extreme variant of this is to treat the copula as time fixed. We show in later

sections that this works extremely well in practice, and hence we focus on this variant in

what follows. We provide an extension treating the copula as time-varying in Appendix

A.1.

The finding that the assumption of a fixed copula may work well follows from the

insight by Krusell and Smith (1998) that not all moments of the cross-sectional distribu-

tion µt have a strong impact on the distribution of prices that economic agents need to

forecast. In fact, for this reason Reiter (2009) proposes reducing the dimensionality of

the state space by projecting the histogram of the joint distribution on a lower dimen-

sional object that is perturbed instead. The projection can be done in such a way that,

for example, a list of moments of the distribution is preserved. Yet, id one uses this

approach, the distribution function will in general not maintain the shape it has in the

stationary equilibrium. With our method by contrast, it maintains its shape. Perturbing

11Since the degree of sparseness and the index set I are chosen heuristically, the researcher should
check the robustness of her findings to the choice of the degree of sparseness. Yet, for the state-space
reduction based on singular-value decompositions of the Jacobian as in Ahn et al. (2017), one also needs
to decide on the minimal singular value that is retained.
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only the marginals can be expected to be locally exact if the rank-correlation structure

has no significant impact on equilibrium prices or is relatively constant; see Bayer et al.

(2019) or Luetticke (2018) for examples.

Under this approach, the dynamic system F replaces value functions and distribu-

tions by the parameters θt, dµ1t, . . . , dµmt, where the dµ-terms are the histograms of the

marginal distributions. Since the system has more equations than unknowns now, we

need to reduce the dimensionality of F , too. This can be done by projecting the dif-

ferences back to a lower dimensional space. For example, for the distribution functions

this can be done by comparing only the marginal distributions. For the value functions,

one can focus on the coefficients of the discrete cosine transformation of the error terms

on the value functions at all nodes νt −
(
uhdt

+ βΠhtνt+1

)
in the index set I.

One advantage of reducing the state space before calculating the Jacobian of the dif-

ference equation through fixing the copula and “compressing” the value function instead

of reducing it after calculating the Jacobian (as in Reiter, 2009; Ahn et al., 2017) is

that it reduces substantially the time needed for calculating derivatives and avoids the

potentially large memory requirements to store them that arise in discrete time models.

In addition, it avoids the singular-value decomposition altogether.

Its disadvantage is that it is not guaranteed that the coefficients of the expansion

around the stationary equilibrium value function that are shrunk to zero are unimpor-

tant for the shape of the value function outside the stationary equilibrium. They are

only unimportant in the stationary equilibrium (and hence would have been left out

in procedures that reduce the dimensionality entirely ex ante). Yet, whether the latter

leads to low-quality approximations can be checked through simulating the model along

the lines of the tests suggested by Den Haan (2010a).

2.6 The algorithm in a nutshell

To give a practical guide on the implementation, we finally provide a summary of the

proposed algorithm. Concrete implementations can differ in particular in how the dy-

namic programming problem is solved. In particular, we provide the algorithm here on

the basis of value function iteration, for simplicity and generality. In practice, another

recursive method such as an endogenous grid method might well be preferable.

For our algorithm, define grids sj = {dj1 . . . d
j
nj} for each j = 1 . . .md of the idiosyn-

cratic endogenous state variables dj , with nj being the number of grid points used for

variable j (note that different from the section before, here we explicitly split up the

endogenous state variables in their md-dimensions). In addition to the endogenous id-
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iosyncratic states, there is the exogenous stochastic one, x, which evolves on the grid

s0 = {x1 . . . xn0}, which together with the transition matrix Πx defines a discrete Markov

chain for this state variable (collapsing all idiosyncratic exogenous states mx into one).

Let S ⊗j=0...md s
j be the tensor product (mesh) of these md + 1 grids, and let IS be the

corresponding tensor product (mesh) of the indexes. This mesh has in total J =
∏md
j=0 nj

grid points.

We define V as the md+1-dimensional array that stores the values of a value function

at each point of the mesh S. We define ν̂[(x, d1 . . . dmd)|ΠxV] as the linear interpolant

defined by the mesh S and node values ΠxV, where ΠxV is the matrix product of Πx

and V reshaped accordingly. With dµ ∈ Rn0×n1×...nmd we denote the histogram of the

distribution of agents over all states s ∈ S in array form; dµ is the same, but vectorized

(stacked). Let X be the (exogenous) aggregate state of the economy with X̄ its steady-

state value.

Prerequisites 1.

1. Define for a given price system P a mapping T (V|P ) : RJ → RJ such that

∀s = (x, d1 . . . dmd) ∈ S :

T (V|P )(s) := max
(d1′...dmd ′)∈Γ(s,P )

u(s, d1′ . . . dmd ′) + βν̂[(x, d1′ . . . dmd ′)|ΠxV].

In words, this mapping is one iteration of the value function. Define hd(V|P ) :

RJ → RJ/n0 as the corresponding policy function (the arg max).

2. Define a mapping Π = Π(VP ) : RJ → RJ×J such that

∀k = (k0 . . . kmd), l = (l0 . . . lmd) ∈ IS : Π(VP )(k, l) = Πx(k0, l0)

md∏
j=1

Πdj (k, l),

where Πdj are the coefficients to represent the policy hdP (x) = (hd1(x) . . . hdmd(x)) as

convex combinations of the nearest neighbors on the index mesh IS, i.e.,

Πdj (k, l) =


0 if hdj (k) /∈ [djl−1, d

j
l+1]

1− hdj (k)−djl
djl+1−d

j
l

if djl+1 ≥ h
d
j > djl

hdj−d
j
l−1

djl−d
j
l−1

if djl ≥ h
d
j ≥ d

j
l−1

. (17)

3. The discrete cosine transformation of an array A along a dimension j is given
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by pre-multiplying a transformation matrix Cj to array A along the j-dimension.

This is done by permuting the array such that dimension j becomes the first one

and reshaping the array to matrix form. The result of this matrix multiplication

has to be reshaped back to its array form, permuting the now first dimension back

to the j-th position. The inverse is defined analogously through pre-multiplication

of C−1
j = C ′j. The matrix Cj is constructed as

Cj(k, l) =
√

2/nj cos

(
π

(l − 1/2)(k − 1)

nj

)
∀k, l = 1 . . . nj (18)

Algorithm 1.

1. Finding the stationary equilibrium

(a) For a given price system P iterate T (n) = T (T (. . . T (V(0)|P )|P )|P )︸ ︷︷ ︸
n times

until con-

vergence to obtain an equilibrium value function VP as the limit n→∞.

(b) Calculate the equilibrium distribution dµP by solving dµP = dµPΠ(VP ).

(c) Calculate excess demand Φ as a function Φ(hdP , dµP ).

(d) Search over prices, repeating (a) to (c) until Φ(hdP , dµP ) = 0. The prices

that set excess demand to zero are in the following denoted as P̄ with h̄d and

V̄ being the corresponding policy and value functions and d̄µ the equilibrium

histogram.

2. Dimensionality reduction

(a) Define the joint distribution function µ̄(s) =
∑

x≤s d̄µ(x). Define µ̄j ∈ [0, 1]nj , j =

0 . . .md as the md + 1 vectors of the marginal distributions corresponding to

the nj points on the sj-grids. Generate the fixed copula Ξ̄(µ0, . . . , µmd |µ̄) :

[0, 1]md+1 → [0, 1] as an interpolant of µ̄ on the tensor product ⊗mdj=0µ̄
j.

(b) Calculate the discrete cosine transformation of V̄ along all md + 1 dimen-

sions. This yields coefficients Θ̄. Find the minimal index set I, such that∑
i∈I Θ̄(i)2∑
i Θ̄(i)2 > 1 − ε (by sorting the coefficients and retaining only the largest

ones).

(c) Define a sparse vector that has #I non-zero entries and hence is effectively

much shorter than Θ̄ ∈ RJ . In the following, when we speak of perturbing θt,

we mean perturbing its non-zero entries. This vector is used to assign values

to those coefficients of the discrete cosine transformation of V̄ that were found
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to be different from zero and hence important. In other words, it assigns a

value to each coefficient in the index set I, such that we obtain the full set of

coefficients, Θ̂(θ|Θ, I) ∈ RJ , which is given by

Θ̂ =

Θ̄(i) + θ(i) if i ∈ I

Θ̄(i) if i /∈ I

The mapping of this array Θ̂ to the value function values V̂(θ) is obtained

through an inverse cosine transformation.

3. Linearization

(a) Define the following objects:

• the difference between the value function implied from one backward iter-

ation based on its value at time t+ 1 and the value function for time t as

implied by θt. We apply the discrete cosine transformation to the value

functions and evaluate on all points in S

∆ν(θt, θt+1, Pt) := θt − dct
{
T
[
V̂(θt+1)|Pt

]}
∈ RJ .

The shorter vector ∆∗ν selects out of ∆ν only those elements that corre-

spond to the index set I.

• for all variables j = 0 . . .md the difference between the marginal distribu-

tion for time t+1 obtained from iterating forward once (using the optimal

policies) the distribution implied by (µjt )j=0...md and the copula Ξ̄

∆∗µ[{µjt}j=0...md , {µ
j
t+1}j=0...md , Pt, θt+1] ∈ R

∑
(md+1) nj .

• the excess demand function

Φ({µjt}j=0...md , θt+1, Pt, St, St+1) := Φ
[
dΞ̄({µjt}j=0...md), h

d
Pt,V̂(θt+1)

, St, St+1

]
.

(b) Use these differences to define a function

F ({µjt}j=0...md , St, St+1, {µjt+1}j=0...md , θt, Pt, θt+1, Pt+1|Ξ̄, V̄, I)
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that describes the economy as a system of non-linear difference equations

F =


∆∗ν(θt, θt+1, Pt)

∆∗µ[{µjt}j=0...md , {µ
j
t+1}j=0...md , Pt, θt+1]

St+1 −H(St)

Φ({µjt}j=0...md , θt+1, Pt, St, St+1)

 (19)

(c) Calculate the Jacobian of F. Define A,B as defined in the text before and as

in Schmitt-Grohé and Uribe (2004).

(d) Calculate the qz decomposition and solve for the linearized dynamics using the

algorithm provided by Schmitt-Grohé and Uribe (2004).

3 Examples

In the following, we discuss two examples to illustrate our modification of Reiter’s method

to solve general equilibrium models with heterogeneous agents and aggregate risk. Both

examples share the same model of consumption-savings choice in which households face

uninsurable income risk and use assets to self-insure. We then specify two variants of

the model: one without nominal frictions and only one asset, i.e., the setup of Krusell

and Smith (1998); second, a setup with two assets of different liquidity and a nominal

rigidity. The first example can be solved using the original Krusell and Smith algorithm

and the Reiter algorithm without state-space reduction. For the second example, state-

space reduction is necessary to render the computation feasible. Details on the numerical

precision of the various algorithms are provided in Section 4.

3.1 Household sector

There is a continuum of ex-ante identical households of measure one, indexed by i.

Households are infinitely lived, have time-separable preferences with time-discount factor

β, and derive felicity from consumption cit and leisure. Households have Greenwood-

Hercowitz-Huffman (GHH) preferences, and maximize the discounted sum of felicity:12

E0 max
{cit,nit,∆kit}

∞∑
t=0

βtu [cit −G(hit, nit)] .

12The assumption of GHH preferences simplifies the numerical analysis of the stationary equilibrium
substantially but is not necessary for our implementation of Reiter’s method.
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The maximization is subject to the budget constraints described further below. The

felicity function u exhibits a constant relative risk aversion (CRRA) with risk aversion

parameter ξ > 0,

u(xit) =
1

1− ξ
x1−ξ
it ,

where xit = cit − G(hit, nit) is household i’s composite demand for goods consumption

cit and leisure and G measures the disutility from work. Goods consumption bundles

varieties j of differentiated goods according to a Dixit-Stiglitz aggregator:

cit =

(∫
c
η−1
η

ijt dj

) η
η−1

.

Each of these differentiated goods is offered at price pjt, so that for the aggregate price

level, Pt =
(∫

p1−η
jt dj

) 1
1−η

, the demand for each of the varieties is given by

cijt =

(
pjt
Pt

)−η
cit.

The disutility of work, G(hit, nit), determines a household’s labor supply given the

aggregate wage rate, wt, and a labor income tax, τ , through the first-order condition:

∂G(hit, nit)

∂nit
= (1− τ)wthit.

Assuming that G has a constant elasticity w.r.t. n, ∂G(hit,nit)
∂nit

= (1 + γ)G(hit,nit)
nit

with

γ > 0, we can simplify the expression for the composite consumption good xit making

use of the first-order condition (3.1):

xit = cit −G(hit, nit) = cit −
(1− τ)wthitnit

1 + γ
.

When the Frisch elasticity of labor supply is constant, the disutility of labor is always a

constant fraction of labor income. Therefore, in both the budget constraint of the house-

hold and its felicity function, only after-tax income enters, and neither hours worked nor

productivity appears separately.

This implies that we can assume G(hit, nit) = hit
n1+γ
it

1+γ without further loss of gen-

erality as long as we treat the empirical distribution of income as a calibration target.

This functional form simplifies the household problem as hit drops out from the first-

order condition and all households supply the same number of hours nit = N(wt). Total
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effective labor input,
∫
nithitdi, is hence also equal to N(wt) because

∫
hitdi = 1.

A household’s labor income wthitnit is composed of the aggregate wage rate, wt, the

household’s hours worked, nit, and its idiosyncratic labor productivity, hit. Productivity

evolves according to a log-AR(1) process and a fixed probability of transition to a high

income state in which hit = 0 but households receive a share of pure rents, i.e., they

become entrepreneurs:

hit =


exp

(
ρh log hit−1 + εhit

)
with probability 1− ζ if hit−1 6= 0,

1 with probability ι if hit−1 = 0,

0 otherwise,

with shocks to productivity εhit being normally distributed.

With probability ζ households become entrepreneurs (h = 0). With probability ι an

entrepreneur returns to the labor force with median productivity. An entrepreneurial

household obtains a fixed share of the pure rents, Πt, in the economy (from monopolistic

competition and creation of capital). We assume that the claim to the pure rent cannot

be traded as an asset. The idea here is that a household that becomes an entrepreneur

develops a variety only it can produce out of intermediate goods and it loses this capacity

(because its variety is replaced by another household’s drastic innovation) when returning

to the labor force.

3.2 Price setting

These entrepreneur households, i.e., the final-goods producers, differentiate the interme-

diate good and set prices. We assume price adjustment costs à la Rotemberg (1982). For

tractability, we assume that the actual price setting is delegated to a mass-zero group of

households (managers) that are risk neutral and compensated by a share in profits. They

do not participate in any asset market. Under this assumption, managers maximize the

present value of real profits given the demand for good j,

yjt = (pjt/Pt)
−η Yt,

and quadratic costs of price adjustment, i.e., they maximize:

E0

∞∑
t=0

βtYt

{(
pjt
Pt
−MCt

)(
pjt
Pt

)−η
− η

2κ

(
log

pjt
pjt−1

)2
}
,
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with a time-constant discount factor. From the corresponding first-order condition for

price setting, it is straightforward to derive the Phillips curve:

log(πt) = βEt

[
log(πt+1)Yt+1

Yt

]
+ κ

(
MCt − η−1

η

)
, (20)

where πt is the gross inflation rate, πt := Pt
Pt−1

, and MCt is the real marginal costs. The

price adjustment then creates real costs η
2κYt log(πt)

2.

Since managers are a mass-zero group in the economy, their consumption does not

show up in any resource constraint and all profits – net of price adjustment costs – go

to the entrepreneur households (whose h = 0). In the case of the two-asset economy,

these households also obtain profit income from adjusting the aggregate capital stock.

They can transform It consumption goods into ∆Kt+1 new capital goods (and back)

according to the transformation function:13

It = φ
2 (∆Kt+1/Kt)

2Kt + ∆Kt+1.

Since they are facing perfect competition in this market, entrepreneurs will adjust the

stock of capital until the following first-order condition holds:

qt = 1 + φ∆Kt+1/Kt,

where qt is the price of capital.14

3.3 Intermediate-goods producers

Intermediate goods are produced with a constant returns to scale production function:

Yt = AtN
α
t K

(1−α)
t ,

where Kt = E(kit) is the aggregate capital supply, Nt = E(h)[(1−τ)wt]
1
γ is the aggregate

labor supply, and At is total factor productivity.

Let MCt be the relative price at which the intermediate good is sold to entrepreneurs.

The intermediate-good producer maximizes profits,

MCtYt − wtNt − (rt + δ)Kt = MCtAtN
α
t K

(1−α)
t − wtNt − (rt + δ)Kt,

13We assume that capital goods producers are each small and thus ignore their externality on the
future cost of capital goods production.

14We assume for simplicity that all depreciation is replaced immediately through maintenance invest-
ment that transforms consumption goods into replacement investment one-for-one.
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but it operates in perfectly competitive markets, such that the real wage and the user

costs of capital are given by the marginal products of labor and capital:

wt = αAtMCt (Kt/Nt)
1−α , rt + δ = (1− α)AtMCt (Nt/Kt)

α .

3.4 Model variants

To close the model, we still need to define which assets households can trade. As stated

before, we consider two model variants. First, we have a variant of the original Krusell

and Smith (1998) economy where only capital is traded, which is a perfectly liquid

asset. This variant serves to benchmark our solution strategy against other discrete

time methods. Second, we use the economy as in Bayer et al. (2019) and Luetticke

(2018) with a liquid nominal asset and illiquid capital. This economy cannot be solved

without state-space reduction and serves as an application example for those cases.

3.4.1 A neoclassical economy with one asset: The Krusell-Smith setup

Our model nests the Krusell and Smith (1998) economy. In that economy, households

save only in capital that is perfectly liquid. There are no entrepreneurs (ζ = 0), labor

supply is constant, competition is perfect, and price adjustment is costless (η, κ →
∞, ηκ → 0). In addition there is no capital adjustment cost, φ = 0, such that qt = 1.

Taxes τ are zero, too.

Therefore, households optimize subject to this budget constraint:

cit + kit+1 = kit(1 + rt) + wthitN,

kit+1 ≥ 0,

where rt is the real return on capital.

Substituting the expression cit = xit + wthitN
1+γ for consumption, we obtain:

xit + kit+1 = kit(1 + rt) +
(

γ
1+γwthitN

)
,

kit+1 ≥ 0.

With this setup, one Bellman equation characterizes the dynamic planning problem

of a household:

V (k, h;µ,A) = max
k′

u[x(k, k′, h)] + βV (k′, h′;µ′, A′),
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where µ is the wealth-income distribution and A is aggregate productivity as the only

other state variable. Capital and labor market clearing are the only equilibrium condi-

tions (there is classical dichotomy and the nominal side is not determined):

wt = αAt (Kt/N)1−α , rt + δ = (1− α)At (N/Kt)
α .

3.4.2 New-Keynesian variant with liquid and illiquid assets

The second model variant introduces a nominal rigidity, such that the Phillips curve

(20) is not vertical, and a nominal bond that pays Rt, and makes capital illiquid, such

that the two assets are not close substitutes. Illiquidity is modeled as follows: Only a

randomly selected fraction of households, ν, participates in the market for capital each

period and can thus actively sell or buy capital. All other households obtain dividends,

but may only adjust their holdings of nominal bonds. Holdings of bonds have to be

above an exogenous debt limit B, and holdings of capital have to be non-negative.

Therefore, households optimize subject to their budget constraint:

cit + bit+1 + qtkit+1 = bit
R(bit,R

b
t)

πt
+ (qt + rt)kit + (1− τ)(wthitNt + Ihit=0Πt),

kit+1 ≥ 0, bit+1 ≥ B,

where bit is real bond holdings, B is an exogenous borrowing constraint, kit is the amount

of illiquid assets, qt is the price of these assets, rt is their dividend, πt = Pt−Pt−1

Pt−1
is realized

inflation, and R is the nominal interest rate on bonds, which depends on the portfolio

position of the household and the central bank’s interest rate Rbt , which is set one period

before. All households that do not participate in the capital market (kit+1 = kit) still

obtain dividends and can adjust their bond holdings. Depreciated capital has to be

replaced for maintenance, such that the dividend, rt, is the net return on capital.

We assume that there is a wasted intermediation cost, R, when households resort to

unsecured borrowing and specify:

R(bit, R
b
t) =

Rbt if bit ≥ 0

Rbt +R if bit < 0.

This assumption creates a mass of households with zero unsecured credit but with the

possibility to borrow, though at a penalty rate.
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Substituting the expression cit = xit + (1−τ)wthitNt
1+γ for consumption, we obtain:

xit + bit+1 + qtkit+1 = bit
R(bit,R

b
t)

πt
+ (qt + rt)kit + (1− τ)

(
γ

1+γwthitNt + Ihit=0Πt

)
,

kit+1 ≥ 0, bit+1 ≥ B.

With this setup, two Bellman equations characterize the dynamic planning problem

of a household: Va in the case where the household can adjust its capital holdings and

Vn otherwise:

Va(b, k, h;µ,Rb, A) = max
k′,b′a

u[x(b, b′a, k, k
′, h)] + β[νEV a(b′a, k

′, h′;µ′, Rb
′
, A′)

+ (1− ν)EV n(b′a, k
′, h′;µ′, Rb

′
, A′)]

Vn(b, k, h;µ,Rb, A) = max
b′n

u[x(b, b′n, k, k, h)] + β[νEV a(b′n, k, h
′;µ′, Rb

′
, A′)

+ (1− ν)EV n(b′n, k, h
′;µ′, Rb

′
, A′)]

Since we allow for a nominal rigidity, the equilibrium is only determined when a

monetary and a fiscal policy are specified. Monetary policy controls the nominal interest

rate on liquid assets, while fiscal policy determines the amount of government bonds by

controlling fiscal deficits through the adjustment of expenditures. We assume that the

monetary and fiscal authorities operate independently and their behavior is described

by simple rules.

We assume that monetary policy sets the nominal interest rate on bonds following a

Taylor-type 1993 rule with interest rate smoothing:

Rbt+1

R̄b
=

(
Rbt
R̄b

)ρR (πt
π̄

)(1−ρR)θπ
.

The coefficient R̄b ≥ 0 determines the nominal interest rate in the steady state. The

coefficient θπ ≥ 0 governs the extent to which the central bank attempts to stabilize

inflation around its steady-state value: the larger θπ the stronger is the reaction of the

central bank to deviations from the inflation target. When θπ →∞, inflation is perfectly

stabilized at its steady-state value. ρR ≥ 0 captures interest rate smoothing.

We assume that the government issues bonds according to the rule (c.f. Woodford,

1995):

Bt+1

B̄
=

(
BtR

b
t/πt

B̄R̄b/π̄

)ρB (πt
π̄

)−γπ (Tt
T̄

)−γT
,

using tax revenues Tt = τ(wtNt + Πt) to finance government consumption, Gt, and
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interest on debt. In other words, the government seeks to stabilize debt in the long

run and output in the short run. The coefficient ρB captures whether and how fast

the government seeks to repay its outstanding obligations BtR
b
t/πt. For ρB < 1 the

government actively stabilizes real government debt, and for ρB = 1 the government

rolls over all outstanding debt including interest. The coefficients γπ, γT capture the

cyclicality of debt issuance: for γπ = γT = 0, new debt does not actively react to tax

revenues and inflation, but only to the value of outstanding debt. For γπ > 0 > γT , debt

is countercyclical; for γπ < 0 < γT it is procyclical.

In equilibrium, we need both factor markets to clear, such that

wt = αMCtAt (Kt/Nt)
1−α , rt + δ = (1− α)AtMCt (Nt/Kt)

α ,

and we also need asset markets to clear. This requires first

Bt+1 = Bd(µt;R
b
t , At; qt, πt) := E [νb∗a + (1− ν)b∗n] , (21)

where b∗a, b
∗
n are bond demand functions of adjusters and non-adjusters. They are func-

tions in the states (b, k, h;Rbt , At), of current prices qt, πt, and of expectations of future

prices. Expectations in the right-hand-side expression are taken w.r.t. the distribution

µt(b, k, h). Equilibrium requires the total net amount of bonds the household sector

demands, Bd, to equal the supply of government bonds. In gross terms there are more

liquid assets in circulation as some households borrow up to B.

Second, the asset market for capital has to clear. This requires that

qt = 1 + φ
Kt+1 −Kt

Kt
, (22)

Kt+1 = Kd(µt;R
b
t , At; qt, πt) := E[νk∗ + (1− ν)k].

Again expectations are taken w.r.t. the distribution µt(b, k, h).

4 Numerical Performance

In the following we first demonstrate the performance and accuracy of our method

by comparing it to the Krusell and Smith (1998) algorithm for the standard Krusell

and Smith (K-S) model, as described in Section 3.4.1. We then show the scalability

of our method by solving heterogeneous agent New-Keynesian (HANK) models with

higher dimensional heterogeneity, providing accuracy measures for the variant described

in Section 3.4.2. Finally, we also show that our approach also practically renders second-

order approximatableions feasible. All codes are available on the authors’ websites.
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Figure 1: Simulations of Krusell & Smith model

(a) Simulation (b) Simulation close-up
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Notes: Both panels show simulations of the Krusell & Smith (1998) model with TFP shocks
solved with (1) the Reiter method with our proposed state-space reduction, (2) the original
Reiter method without state-space reduction, and (3) the original Krusell & Smith algorithm;
simulated for 1,000 periods. The draws for the productivity process are kept constant across
solution methods.

4.1 Comparison to Krusell & Smith (1998)

To compare the performance and accuracy of our method, we solve Krusell and Smith’s

(1998) model with the standard parameterization of the JEDC comparison project (c.f.

Den Haan et al., 2010).15 A period in the model is a quarter, the discount factor is

β = 0.99, the coefficient of relative risk aversion is ξ = 1, and the rate of depreciation

equals 2.5% per quarter.16 Idiosyncratic and aggregate productivity risk both follow two-

state Markov chains. We solve the household problem on 100 grid points for idiosyncratic

capital. The grid for the aggregate capital stock has 3 points for the Krusell-Smith

algorithm and covers the unconditional ±3 STD interval from the linearized solution.

4.1.1 Numerical quality

Figure 1 shows simulations of the K-S model for three different solution methods: (1)

perturbation with state-space reduction via the fixed copula assumption and policy func-

tion compression (25 coefficients of the discrete cosine transformation conserve 99.99%

of the energy), (2) perturbation with a full policy function and histogram on the tensor

15Setting η → ∞ and κ → ∞, i.e., no markups and flexible prices, yields the standard neoclassical
incomplete markets model.

16See Appendix B Table 8 for the calibration.
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Table 1: Simulation errors relative to Krusell & Smith algorithm

Absolute difference (in %) of log capital stocks Kt between simulations

Reiter-Reduction vs. K-S Reiter-Full vs. K-S R.-Reduction vs. R.-Full

Mean 0.0324 0.0324 0.0003
Max 0.0670 0.0662 0.0012

Notes: Differences in percent between simulations of aggregate capital for the Krusell
and Smith (1998) model solved with (1) the Reiter method with our proposed state-space
reduction, (2) the original Reiter method without state-space reduction, (3) the original
Krusell & Smith algorithm. The first two columns show the performance of (1) and (2)
relative to (3), and the last column shows the performance of (1) relative to (2) for 1,000
periods. The draws for the productivity process are kept constant across solution methods.

product of the income and capital grid as in Reiter (2002), and (3) the original Krusell

and Smith algorithm.17 The response of aggregate capital to TFP shocks is virtually the

same in all three simulations. Table 1 confirms this. The mean absolute error between

the time series from the two linearization methods and the K-S algorithm is 0.03%. What

is more, the linearization methods with and without state and control space reduction

yield basically the same simulation for the aggregate stock of capital with a maximum

absolute error of 0.001%.

To further evaluate the accuracy of our solution method, we use the error metric

suggested by Den Haan (2010a), comparing the simulation from the linearized solution

of the model to one in which we solve for the equilibrium interest rate every period and

track the full histogram over time. The mean absolute error is 0.01% and the maximum

error is 0.019%; see Table 2. The K-S algorithm, which is the most accurate algorithm in

Den Haan et al. (2010), here is also most precise with a mean absolute error of 0.005%.

In Appendix A.2, we show that this result is not specific to the parameterization.

Finally, Table 3 shows the run times of all three methods and the steady state

separately. The Reiter method with state and control space reduction only takes 0.4

seconds. This makes it more than 240 times faster than the Krusell and Smith algorithm.

Without reduction, the run time increases by a factor of 3. Even when the time to

compute the stationary equilibrium is taken into account, our linearization method is

13 times faster than the Krusell-Smith algorithm. The main advantage of linearization

17The simulations start from the steady state without aggregate risk, which is the same for all three
methods. For all statistics, we simulate the model for 1000 periods.
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Table 2: Den Haan errors

Absolute error (in %) for log capital Kt

Reiter-Reduction Reiter-Full K-S

Mean 0.0100 0.0102 0.0051
Max 0.0191 0.0193 0.0131

Notes: Differences in percent between the simulation of the linearized solu-
tions of the model and simulations in which we solve for the intratemporal
equilibrium prices in every period and track the full histogram over time
for t = {1, ..., 1000}; see Den Haan (2010a).

with state and control space reduction, however, lies in its capacity to solve models with

many idiosyncratic states fast and precisely as the next section shows. Before going

there, we will provide a short illustration of our dimension reduction procedure in the

Krusell-Smith economy.

Table 3: Run time for Krusell & Smith model

Stationary equilibrium Krusell & Smith Reiter-Reduction Reiter-Full

in seconds 7.05 91.61 0.38 1.19

Notes: Run time in seconds on a Dell laptop with an Intel i7-7500U CPU at 2.70GHz at 4.
Model calibration and number of grid points as in Den Haan et al. (2010). Code in Matlab.

4.1.2 Details on using the DCT for dimensionality reduction

The small size of the Krusell and Smith example allows us to discuss the advantages of

our dimensionality reduction procedure by displaying the implied approximations and

approximation errors for different levels of state-space reductions for the policy functions

(since we solve with EGM). Here we apply a much rougher approximation than in the

previous subsection to show where the potential of strong dimensionality reduction comes

from and compare this to the alternative of selecting the perturbed coefficients as those of
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Figure 2: Stationary equilibrium consumption policies by sparseness of θ
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a complete polynomial of a given order (a non-adaptive “sparse” type of approximation).

We present in the following the solution of the model in terms of policy functions

and impulse responses based on retaining 10, 50, and all 200 coefficients of the discrete

cosine transform of the policy function. First, we compare the policy function in the

stationary equilibrium with the policy function that would have been obtained by solving

the stationary equilibrium with the sparse Chebyshev polynomial, i.e., actually shrinking

the remaining smaller coefficients to zero already in the stationary equilibrium solution.

The comparison can be seen in Figure 2. The approximation with 10 coefficients is

fairly rough and unsatisfactory in quality as a description of the stationary equilibrium

policy. It shows excessive fluctuation and oscillation. With 50 out of 200 coefficients,

the approximation becomes much better, but small oscillations and approximation errors

remain. Applying the method of Reiter (2009) or Winberry (2018), one might accept the

sparse Chebyshev polynomial with 50 coefficients as an ex ante dimensionality reduction.

A low number of coefficients, however, has hardly any impact on the response of

individual policies to a TFP shock; see Figure 3. The figure shows how consumption

policies change (according to our solution) for different levels of sparseness of θ, i.e., for

a different number of retained coefficients. The reason for this is that the shock mostly

produces a level shift for consumption together with a small change in the steepness of

the consumption policy in wealth and income. Using the stationary equilibrium values

of the small coefficients, changes in the large coefficients of the discrete cosine transform

of the consumption policy can capture these shifts well. In other words, the stationary

equilibrium policies provide a good “reference frame” that we can exploit for our solution.

Not very surprisingly, with these small differences in individual policies, the aggregate

responses look also indistinguishable; see Figure 4.
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Figure 3: Change in consumption policies after a 20% TFP shock by sparseness of θ
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As we argued before, finding which of the coefficients are perturbed of a Chebyshev

polynomial representation of the value/policy functions is in principle not an ex-ante

well-defined problem. Retaining those coefficients that are large when representing the

stationary equilibrium value/policy functions is only a heuristic. An alternative (heuris-

tic) would be to retain those coefficients that correspond to the complete (instead of full)

polynomial. In practice, this means that we retain those coefficients that correspond to

polynomial terms (over the two dimensions) that have a sum of exponents of at most

some number N .

We compare this choice in Table 4 to our suggested choice of finding the coefficients

to retain, i.e., by perturbing only those coefficients that are large in the stationary equi-

librium solution. Despite the fact that the complete polynomial choice has a somewhat

stronger theoretical underpinning (being a Taylor expansion), in our practical exam-

Figure 4: Aggregate response after a 20% TFP shock by sparseness of θ
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Table 4: Comparison of DCT-based coefficient selection to a non-adaptive rule

Degree of polynomial, N 50 40 30 20
Number of Coefficients 101 81 61 41

Selection of coefficients Max absolute difference of log capital
stocks (×1e−8)

(a) Complete polynomial 0.08 0.80 6.24 37.37
(b) DCT 0.10 0.43 0.07 0.46

Mean absolute difference of log capital
stocks (×1e−8)

(a) Complete polynomial 0.02 0.25 1.95 11.59
(b) DCT 0.03 0.13 0.02 0.13

Notes: Relative differences between the simulated capital stock for 1000 periods
obtained from using all coefficients of the policy function and either (a) the reduc-
tion Reiter method where coefficients are retained that form the complete poly-
nomial of at most order N or (b) the reduction Reiter method with our proposed
DCT-based selection of coefficients that retains the same number of coefficients
as in (a).

ple it performs substantially worse—especially when the number of retained coefficients

becomes small. For less than 35 retained coefficients the selection based on forming a

complete polynomial of given order yields such a bad approximation that we get a vi-

olation of the Blanchard-Kahn condition and the model fails to solve. The DCT-based

selection allows us to still solve for much fewer retained coefficients with relatively high

precision.

The reason for the superior performance of the adaptive DCT-based method is that

across different income states, the policy functions are relatively similar in the stationary

equilibrium (think: one is an affine transformation of the other); the DCT method detects

this, and this remains true even when prices change after a shock.

4.1.3 Details on using the copula for dimensionality reduction

To understand how restrictive the assumption of a fixed copula is, we compare the

model-implied distributions over time for the solution that does no reduction (Reiter-

31



Full) and our method, which fixes the copula. We further consider an in-between case

where we treat the copula as a functional that we represent through its DCT, perturbing

only its most important coefficients. Details about the implementation can be found in

Appendix A.1.

Figure 5 shows the result of this exercise. For the top row, we simulate the model

using TFP shocks (as described before) as the driving force. As all households are

similarly affected by the TFP shocks, there is no strong a priori reason for the copula

to vary much over the cycle – of course the marginals vary and so does the entire

joint distribution. Indeed, we find that the approximation error measured in terms of

the Jensen-Shannon distance (left column)18 between the joint distribution (of assets

and income) in the Reiter solution with and without the fixed copula assumption is an

order of magnitude smaller than the distance between either solution and the stationary

equilibrium distribution. The distance between the distributions is, at 0.0005, negligibly

small. There is virtually no difference in the capital stock series (right column), as we

know from the results in the previous section.

To consider a case where the copula varies more, we simulate the model with shocks

to idiosyncratic income uncertainty as a driver of the cycle (see the next section as

well). These shocks affect the joint distribution of assets and income directly, so that

the fixed-copula assumption has more potential to introduce approximation errors. The

bottom row of Figure 5 shows the results of this exercise. Now, the distance of the

simulated distributions to the steady-state one is much larger and the difference between

the distribution from the full Reiter solution and the one with a fixed copula attains a

significant order of magnitude. We also find some difference in the fluctuations of the

capital stock that the model implies – a model where the fluctuations in capital are

small, as there is little aggregate feedback. However, perturbing the most important

41 coefficients (out of possible 2100) of the DCT of the copula virtually eliminates the

already small difference to the full Reiter solution.

18The Jensen-Shannon distance (JSD) is a metric for distribution functions. It is the square root of
a symmetricized Kullback-Leibler divergence, where for two distribution functions f1, f2 over discrete
support X the JSD is defined as

JSD(f1, f2) =

√
1

2

∑
x∈X

f1(x) log

[
2f1(x)

f1(x) + f2(x)

]
+ f2(x)

[
log

2f2(x)

f1(x) + f2(x)

]
. (23)

To put the Jensen-Shannon distance in perspective, it is useful to think of comparing two normal distri-
butions with unit variance that differ in means. The distance in that case is half the absolute difference
of the means.
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Figure 5: Distance between the distribution with and without fixed copula assumption
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Notes: The top row compares simulated solutions of the Krusell and Smith model for a
series of TFP shocks; the bottom row does the same for a series of income uncertainty
shocks. The left column shows the Jensen-Shannon distance between the distribution of
capital and income between the one implied by the full-grid Reiter method and by our
reduction method, which treats the copula as fixed or perturbs only a few coefficients of
the polynomial approximation for the copula obtained through a DCT. The right column
compares the model solutions through the lens of the aggregate capital stock.
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4.2 Second-order approximation

Given that our approach keeps the number of derivatives to be calculated relatively low, it

is possible to solve the model by second-order perturbation using the method of Schmitt-

Grohé and Uribe (2004). This requires first obtaining the first-order solution (using the

described qz-decomposition technique), then calculating second-order derivatives of F

and finally solving a system of linear equations. For the Krusell and Smith model this

requires to calculate roughly 88 times the number of derivatives as for the first-order

perturbation (in total 30,450).

The left panel of Figure 6 presents the IRF of capital to a large TFP shock (10σS)

for both the first-order and the second-order approximation of the K-S model. The

right panel displays the ergodic distribution of capital for the same model in the first-

order approximation (stationary equilibrium) and second-order approximation (average

capital distribution over simulations).

We view this primarily as a proof-of-concept. For practical applications, one will need

to further decrease the number of derivatives to be calculated by exploiting the economic

structure of the problem, where, for example, the law of motion for the distributions is

linear in the distribution at time t. In Appendix A.3 we provide further details along

this line.

Figure 6: 2nd-order perturbation of Krusell-Smith model
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Notes: Comparison of Reiter-reduction solution with 1st-order and 2nd-order perturbation
(for tenfold standard deviation of TFP shocks). Left panel shows the impulse response of
capital. Right panel shows the steady-state marginal distribution of capital (as a multiple of
steady-state aggregate capital).
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Table 5: Run times and accuracy for two-asset model

Running times*

Stationary equilibrium Reiter-Reduction

In seconds 334.05 34.83

Absolute error (in %)**

For capital Kt For bonds Bt

Mean 0.0440 0.0879
Max 0.1422 0.4356

* On a Dell laptop with an Intel i7-7500U CPU @ 2.70GHz, 4 cores. Code in Matlab.
** Differences in percent between the simulation of the linearized solution of the model and
a simulation in which we solve for the intratemporal equilibrium prices in every period and
track the full histogram over time for t = {1, ..., 1000}; see Den Haan (2010a).

4.3 Two-asset model

The true advantage of the state and control space reduction through fixing the copula

and compressing the value functions lies in breaking the curse of dimensionality and,

thus, making it possible to solve models with high dimensional heterogeneity. In the

following, we provide accuracy statistics and computational time for our model with a

portfolio choice between liquid and illiquid assets as set out in Section 3, in particular

3.4.2. This model features heterogeneity with respect to three dimensions: (1) liquid

asset holdings, (2) illiquid asset holdings, and (3) idiosyncratic productivity. We solve

the household problem on 100 grid points for both asset choices and 3 grid points for

productivity. With 30,000 states and 60,000 controls (for the two value functions), it

is infeasible to solve for the aggregate dynamics of the model on the full histogram.

The copula approximation reduces the number of states to 203. Maintaining only the

coefficients of the discrete cosine transform of the value functions with the cumulative

highest 99.99% energy reduces the number of controls to 156. This all together makes it

possible to solve the model on a laptop computer in, as the top panel of Table 5 shows,

only 34 seconds (plus an additional 6 minutes for the stationary equilibrium).
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Figure 7: Aggregate response to idiosyncratic uncertainty shock
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Notes: Impulse responses to a 54% increase in uncertainty (measured by STD) of idiosyncratic
income tomorrow.

We first solve the model for the same calibration as the Krusell and Smith model in

the previous section.19 Table 5 shows the error metric suggested by Den Haan (2010a)

for the capital stock implied by the two-asset model in response to TFP shocks. The

maximum absolute error is 0.14% and the mean absolute error is 0.04%, which are

comparable to the errors in Table 2 for the single-asset model. The errors for equilibrium

bonds are slightly larger when measured relative to bonds themselves. Bonds are only

10% of the capital stock in the steady state so that, relative to capital or output, the

errors are comparable to the errors for capital.

Being able to solve the two-asset model is important, because it generates “wealthy

hand-to-mouth” households (Kaplan and Violante, 2014) and implies different invest-

ment behavior (see Bayer et al. (2019) and Luetticke (2018)). Figure 7 shows the effect

of higher uncertainty about idiosyncratic productivity in the Krusell and Smith model

and the two-asset HANK model. Consumption falls in both models as households in-

crease their precautionary savings in response to higher uncertainty. In the Krusell and

Smith model, higher savings translate one-for-one into capital, which leads to an eco-

nomic expansion. In the two-asset model, by contrast, households prefer to hold more

liquid portfolios. They sell illiquid capital to save more in liquid assets. Higher uncer-

tainty therefore causes a simultaneous fall in consumption, investment, and output. The

19Appendix B Table 9 provides the full calibration.
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recessionary effect is further amplified through sticky prices, which makes the economy

demand-driven in the short run. See Bayer et al. (2019) for a more detailed discussion

of the portfolio rebalancing channel of uncertainty.20

5 Conclusion

In this paper, we propose an extension of Reiter’s method to solve heterogeneous agent

models with aggregate risk by perturbation. The proposed method relies on reducing the

state space after solving for the stationary equilibrium but before linearizing the non-

linear difference equation that characterizes the equilibrium dynamics. The state-space

reduction is achieved by “lossy compression” of the value functions, which are control

variables of the system, and by approximating the dynamics of the multi-dimensional

distribution of individual characteristics by a distribution with a fixed copula and vary-

ing marginals. Both steps effectively break the curse of dimensionality and allow us

to efficiently and precisely solve for the equilibrium dynamics of heterogeneous agent

economies as we have shown in two examples.

Breaking the curse of dimensionality is essential because it allows us to analyze

business cycle models with rich heterogeneity. Examples that go beyond what we show

here are models where aging adds another dimension to the household problem or where

a richer household portfolio needs to be modeled, e.g., when households own liquid assets,

own houses, and write mortgages at the same time. To all these setups, the proposed

method lends itself well to solving for equilibrium dynamics.
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A Extensions and Robustness

A.1 Time-varying copula

While our baseline algorithm treats the copula as time fixed, the method we use to

approximate time variations in the value/policy functions can also be applied to the

copula framework. For this purpose, we determine the steady-state copula C and its pdf

dC. In principle, we then obtain a DCT of this pdf, ΘdC , to determine the important

coefficients and proceed just as we did for the value/policy functions.

However, the fact that C is a copula such that its discretized version is defined on

a grid of marginal percentiles complicates the setup slightly because integrating out (in

practice: summing over) the other dimensions, the copula always needs to reproduce the

marginal distributions that are its arguments, i.e.∫
µ−i

dC(µi, µ−i) = dµi (24)

must hold. Expressed differently, allowing the perturbation of the entire ΘdC produces

too many degrees of freedom. Therefore, replacing the functionals with their discrete

analogues, we do not calculate the DCT of the entire array dC but leave out the last entry

along each dimension. We can then freely perturb these coefficients and reconstruct the

perturbed copula such that summing along all other dimensions except dimension i still

yields the marginal distribution dµi.

A.2 Robustness to parameter variations

One possible further concern regarding our suggested method could be that it performs

well only for the given parameterization of the Krusell and Smith model. For example,

one question is whether it fares worse for calibrations that lead to more agents being

borrowing constrained. To systematically evaluate this, we consider variations in model

parameters as displayed in Table 6 and consider all possible parameter combinations.

Table 7 reports the mean values over all combinations for the mean and maximum

absolute errors in aggregate capital for the Den Haan (2010a) statistics. Irrespective of

the actual calibration, the method fares well with errors of the same order of magnitude

as the Krusell and Smith method and the maximum error not exceeding 0.21%. Figure

8 shows the distribution of mean absolute errors across all runs for the various methods

(represented by a kernel smoother).
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Table 6: Variations in model parameters

Parameter Lower bound Upper bound

β Discount factor 0.95 0.99
ξ Risk aversion 1 4
γ Inv Frisch 0.5 2
ρH Persistence (idiosyncratic) 0.7 0.95
σH Variance (idiosyncratic) 0.05 0.4
α Labor share 0.5 0.75
ρS Persistence (aggregate) 0.5 0.95
σS Variance (aggregate) 0.001 0.02

Notes: We use the lower and upper bound for each parameter to construct
a linear spaced grid for this parameter. We then solve the model for all
parameter combinations using 3 points for each grid, i.e. 6561 times.

Table 7: Mean Den Haan errors

Mean absolute error (in %) for capital Kt

Reiter-Reduction Reiter-Full K-S

Mean 0.1005 0.1012 0.0587
Max 0.2099 0.2129 0.1998

Notes: For all parameter combinations in Table 6, we solve the KS model
by (1) the Reiter method with our proposed state-space reduction, (2) the
original Reiter method without state-space reduction, and (3) the original
Krusell & Smith algorithm and report here the average (over all param-
eter combinations) differences in percent between the simulation of the
linearized solutions of the model and simulations in which we solve for
the intra-temporal equilibrium prices in every period and track the full
histogram over time for t = {1, ..., 1000}; see Den Haan (2010a).
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Figure 8: Distribution of Den Haan errors
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Notes: For all parameter combinations in Table 6, we solve the KS
model by (1) the Reiter method with our proposed state-space reduc-
tion, (2) the original Reiter method without state-space reduction, (3)
the original Krusell & Smith algorithm and report here the distribution
of the mean absolute differences in percent between the simulation of
the linearized solutions of the model and simulations in which we solve
for the intra-temporal equilibrium prices in every period and track the
full histogram over time for t = {1, ..., 1000}; see Den Haan (2010a).
The raw data is converted into percentiles using a local linear regression
technique with a Gaussian kernel and a bandwidth of 0.05.
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A.3 Exploiting the structure of the problem to reduce the number of

derivatives to be calculated

Our example code calculates all derivatives numerically without exploiting any of the

models’ structure. However, this leaves room to optimize calculations. This is particu-

larly important for second-order derivatives.

First, we observe that the Fokker-Plank equation, the law of motion for distribu-

tions, is linear in the dµ terms and unaffected by current value functions (which are

decision irrelevant). Second, we observe that the distribution terms dµ do not enter the

Bellman equation as long as the set of controls (prices) is sufficiently rich and includes

all individually decision relevant moments of distribution (typically only the means).

This allows to write the Jacobian of F in a convenient fashion which also reduces

strongly the number of non-zero second-order derivatives. For this purpose, we reorder

arguments of F and partition equations such that the “idiosyncratic” arguments and

equations come first:

F (dµt, νt, St, Pt, dµt+1, νt+1, St+1, Pt+1, εt+1) =

[
F i (·)
FA (·)

]
(25)

F i (·) =

[
dµt+1 − dµtΠht

νt −
(
uhdt

+ βΠhtνt+1

)] (26)

FA (·) =


Xt+1 −HX(Xt, Dt) + εt+1

Dt+1 −HD(Xt, Dt, dµt)

Φt(h
d
t , dµt)

εt+1

 (27)

s.t.

hdt (s) = arg max
d′∈Γ(x,d;Pt)

u(x, d, d′) + βEνt+1(x′, d′). (28)
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We can then write the Jacobian matrices A and B as

A =


I ∂νt+1(dµtΠht) 0 0

0 ∂νt+1

(
uhdt

+ βΠhtνt+1

)
0 0

0

[
0

∂νt+1Φ(·)

]
∂St+1F

A(·) ∂Pt+1F
A(·)

 (29)

B =


Πht 0 ∂St(dµtΠht) ∂Pt(dµtΠht)

0 I ∂St

(
uhdt

+ βΠhtνt+1

)
∂Pt

(
uhdt

+ βΠhtνt+1

)
∂dµtF

A(·) 0 ∂StF
A(·) ∂PtF

A(·)

 (30)

Here, we make use of the fact that future prices and states affect the policies only

through future continuation values, that time-t value functions only affect the Bellman

equation itself but are irrelevant for choices, and that the only effect of the current and

future distributions is on the law of motion for distributions and on market clearing. All

this yields a large number of (cross-)derivatives that are known to be zero.

What is more, we observe that the second-order derivatives of the idiosyncratic part

F i with respect to the distribution is zero as the Fokker-Planck equation is a linear

equation in the distribution. Similarly, the second-order derivative with respect to the

current value function is null, etc.

Once all derivatives are calculated, higher-order solutions require to solve a system

of linear equations. Levintal (2017) shows how to write down higher-order derivatives

in a compact way using matrix forms and provides code to efficiently solve large linear

systems, which we use for our second-order solution.
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B Calibrations

Table 8: Parameters of the Krusell & Smith model

Parameter Value Description Target

Households

β 0.99 Discount factor Den Haan et al. (2010)

ξ 1 Relative risk aversion Den Haan et al. (2010)

Production

α 64% Share of labor Den Haan et al. (2010)

δ 2.5% Depreciation rate Den Haan et al. (2010)

ρZ 0.75 Persistence of productivity Den Haan et al. (2010)

σZ 0.07 STD of innovations Den Haan et al. (2010)

Notes: All values are reported for the quarterly frequency of the model.

Idiosyncratic productivity follows the same two state Markov chain as in

Den Haan et al. (2010).
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Table 9: Parameters of the two-asset HANK model for Table 5

Parameter Value Description Target

Households

β 0.99 Discount factor Den Haan et al. (2010)

ν 6.5% Participation frequency Luetticke (2018)

ξ 1 Relative risk aversion Den Haan et al. (2010)

γ 1 Inv. Frisch elasticity Standard value

R 12.5% Borrowing penalty Bayer et al. (2019)

ρh 0.9 Persistence of productivity Den Haan et al. (2010)

σh 0.5 STD of innovations Den Haan et al. (2010)

ζ 0.0005 Prob. to become entrepreneur Bayer et al. (2019)

ι 0.0625 Prob. to become worker Guvenen et al. (2014)

Intermediate Goods

α 67% Share of labor Den Haan et al. (2010)

δ 2.5% Depreciation rate Den Haan et al. (2010)

ρZ 0.75 Persistence of productivity Den Haan et al. (2010)

σZ 0.07 STD of innovations Den Haan et al. (2010)

Final Goods

κ ∞ Price stickiness 0 quarters

η 20 Elasticity of substitution 5% markup

Capital Goods

φ 0 Capital adjustment costs Den Haan et al. (2010)

Fiscal Policy

τ 0.3 Tax rate G/Y = 20%

ρB 0.86 Autocorrelation of debt Bayer et al. (2019)

γπ 0 Reaction to inflation

γT 0 Reaction to taxes

Monetary Policy

Π 1 Inflation 0% p.a.

RB 1.0025 Nominal interest rate 1% p.a.

θπ 1.25 Reaction to inflation Standard value

ρR 0.8 Interest rate smoothing Standard value

Notes: All values are reported for the quarterly frequency of the model.

47



Table 10: Parameters of the two-asset HANK model for Figure 7

Parameter Value Description Source

Households

β 0.98 Discount factor Bayer et al. (2019)

ν 6.5% Participation frequency Luetticke (2018)

ξ 4 Relative risk aversion Bayer et al. (2019)

γ 1 Inv. Frisch elasticity Bayer et al. (2019)

R 11% Borrowing penalty Bayer et al. (2019)

ρh 0.98 Persistence of productivity Bayer et al. (2019)

σh 0.06 STD of innovations Bayer et al. (2019)

ρS 0.84 Persistence of uncertainty Bayer et al. (2019)

σS 0.54 STD of uncertainty shocks Bayer et al. (2019)

ζ 0.0005 Prob. to become entrepreneur Bayer et al. (2019)

ι 0.0625 Prob. to become worker Guvenen et al. (2014)

Intermediate Goods

α 70% Share of labor Income share labor of 66%

δ 1.35% Depreciation rate NIPA: Fixed assets

Final Goods

κ 0.09 Price stickiness 4 quarters

η 20 Elasticity of substitution 5% markup

Capital Goods

φ 11.4 Capital adjustment costs Bayer et al. (2019)

Fiscal Policy

τ 0.3 Tax rate G/Y = 20%

ρB 0.86 Autocorrelation of debt Bayer et al. (2019)

γπ 1.5 Reaction to inflation Bayer et al. (2019)

γT 0.5075 Reaction to taxes Bayer et al. (2019)

Monetary Policy

Π 1 Inflation 0% p.a.

RB 1.0062 Nominal interest rate 2.5% p.a.

θπ 1.25 Reaction to inflation Standard value

ρR 0.8 Interest rate smoothing Standard value

Notes: All values are reported for the quarterly frequency of the model.
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